मराठी

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. x236+y216=1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/36 + y^2/16 = 1`

बेरीज

उत्तर

Equation of ellipse `x^2/36 + y^2/16 = 1`

Comparing with the equation `x^2/a^2 + y^2/b^2 = 1`,

a2 = 36, b2 = 16

c2 = a2 − b2 

= 36 − 16 

= 20

∴ c = `2sqrt5 "e" ="c"/"a"`

= `(2sqrt5)/6 = sqrt5/3`

The coordinates of the foci are (± c, 0), that is (± `2sqrt5`, 0)

vertex (± a, 0) or (± 6, 0),

Length of major axis = 2a = 2 × 6 = 12

Length of minor axis = 2b = 2 × 4 = 8

eccentricity = e = `"c"/"a" = (2sqrt5)/6 = sqrt5/3`

Length of latus rectum = `(2"b")^2/"a" = (2 xx 16)/6 = 16/3`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Conic Sections - Exercise 11.3 [पृष्ठ २५५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 11 Conic Sections
Exercise 11.3 | Q 1 | पृष्ठ २५५

संबंधित प्रश्‍न

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/25 + y^2/100 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/49 + y^2/36 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/100 + y^2/400 = 1`


An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.


A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

4x2 + y = 0 

 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabolas 

y2 − 4y − 3x + 1 = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 + 4x + 4y − 3 = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 = 8x + 8


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 4 (y − 1)2 = − 7 (x − 3) 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 = 5x − 4y − 9 


For the parabola y2 = 4px find the extremities of a double ordinate of length 8 p. Prove that the lines from the vertex to its extremities are at right angles. 


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line-segment makes an angle θ to the x-axis.  


If the coordinates of the vertex and focus of a parabola are (−1, 1) and (2, 3) respectively, then write the equation of its directrix. 


The directrix of the parabola x2 − 4x − 8y + 12 = 0 is


The equation of the parabola with focus (0, 0) and directrix x + y = 4 is 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

 x2 + 4y2 − 4x + 24y + 31 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

3x2 + 4y2 − 12x − 8y + 4 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

4x2 + 16y2 − 24x − 32y − 12 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

x2 + 4y2 − 2x = 0 


Find the equation of the set of all points whose distances from (0, 4) are\[\frac{2}{3}\] of their distances from the line y = 9. 

 

If the lengths of semi-major and semi-minor axes of an ellipse are 2 and \[\sqrt{3}\] and their corresponding equations are y − 5 = 0 and x + 3 = 0, then write the equation of the ellipse. 


If S and S' are two foci of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and B is an end of the minor axis such that ∆BSS' is equilateral, then write the eccentricity of the ellipse.


If the minor axis of an ellipse subtends an equilateral triangle with vertex at one end of major axis, then write the eccentricity of the ellipse. 


Given the ellipse with equation 9x2 + 25y2 = 225, find the major and minor axes, eccentricity, foci and vertices.


Find the equation of the ellipse with foci at (± 5, 0) and x = `36/5` as one of the directrices.


The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is ______.


The equation of the circle having centre (1, –2) and passing through the point of intersection of the lines 3x + y = 14 and 2x + 5y = 18 is ______.


The equation of the ellipse whose centre is at the origin and the x-axis, the major axis, which passes through the points (–3, 1) and (2, –2) is ______.


The equation of the circle which passes through the point (4, 5) and has its centre at (2, 2) is ______.


If the lines 3x – 4y + 4 = 0 and 6x – 8y – 7 = 0 are tangents to a circle, then find the radius of the circle.


The shortest distance from the point (2, –7) to the circle x2 + y2 – 14x – 10y – 151 = 0 is equal to 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×