Advertisements
Advertisements
प्रश्न
Find the following product:
(2x – y + 3z)(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz)
उत्तर १
(2x – y + 3z)(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz)
= 2x(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz) – y(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz) + 3z(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz)
= 8x3 + 2xy2 + 18xz2 + 4x2y + 6xyz – 12x2z – 4x2y – y3 – 9yz2 – 2xy2 – 3y2z + 6xyz + 12x2z + 3y2z + 27z3 + 6xyz + 9yz2 – 18xz2
= 8x3 + (2xy2 – 2xy2) + (18xz2 – 18xz2) + (4x2y – 4x2y) + (6xyz + 6xyz + 6xyz) + (–12x2z + 12x2z) – y3 + (–9yz2 + 9yz2) + (–3y2z + 3y2z) + 27z3
= 8x3 + 18xyz – y3 + 27z3
= 8x3 – y3 + 27z3 + 18xyz
उत्तर २
(2x – y + 3z)(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz)
= (2x – y + 3z)[(2x)2 + (–y)2 + (3z)2 – (2x)(–y) – (–y)(3z) – (2x)(3z)]
= (2x)3 + (–y)3 + (3z)3 – 3(2x)(–y)(3z) ...[Using identity, (a + b + c)(a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 – 3abc]
= 8x3 – y3 + 27z3 + 18xyz
APPEARS IN
संबंधित प्रश्न
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = x3 − 4x2 + x + 6, g(x) = x − 3
Factorise:
2y3 + y2 – 2y – 1
Determine the following polynomial has (x + 1) a factor:
x4 + 3x3 + 3x2 + x + 1
Factorize the following polynomial.
(x2 – 6x)2 – 8 (x2 – 6x + 8) – 64
If x + 1 is a factor of the polynomial 2x2 + kx, then the value of k is ______.
Show that x + 3 is a factor of 69 + 11x – x2 + x3.
Determine which of the following polynomials has x – 2 a factor:
3x2 + 6x – 24
If x + 1 is a factor of ax3 + x2 – 2x + 4a – 9, find the value of a.
Factorise the following:
`8p^3 + 12/5 p^2 + 6/25 p + 1/125`
Without finding the cubes, factorise:
(x – 2y)3 + (2y – 3z)3 + (3z – x)3