Advertisements
Advertisements
Question
Find the following product:
(2x – y + 3z)(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz)
Solution 1
(2x – y + 3z)(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz)
= 2x(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz) – y(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz) + 3z(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz)
= 8x3 + 2xy2 + 18xz2 + 4x2y + 6xyz – 12x2z – 4x2y – y3 – 9yz2 – 2xy2 – 3y2z + 6xyz + 12x2z + 3y2z + 27z3 + 6xyz + 9yz2 – 18xz2
= 8x3 + (2xy2 – 2xy2) + (18xz2 – 18xz2) + (4x2y – 4x2y) + (6xyz + 6xyz + 6xyz) + (–12x2z + 12x2z) – y3 + (–9yz2 + 9yz2) + (–3y2z + 3y2z) + 27z3
= 8x3 + 18xyz – y3 + 27z3
= 8x3 – y3 + 27z3 + 18xyz
Solution 2
(2x – y + 3z)(4x2 + y2 + 9z2 + 2xy + 3yz – 6xz)
= (2x – y + 3z)[(2x)2 + (–y)2 + (3z)2 – (2x)(–y) – (–y)(3z) – (2x)(3z)]
= (2x)3 + (–y)3 + (3z)3 – 3(2x)(–y)(3z) ...[Using identity, (a + b + c)(a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 – 3abc]
= 8x3 – y3 + 27z3 + 18xyz
APPEARS IN
RELATED QUESTIONS
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = 2x3 + x2 – 2x – 1, g(x) = x + 1
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = x3 − 4x2 + x + 6, g(x) = x − 3
Find the value of k, if x – 1 is a factor of p(x) in the following case:
p(x) = kx2 – 3x + k
Factorise:
6x2 + 5x – 6
Find the factor of the polynomial given below.
12x2 + 61x + 77
Find the factor of the polynomial given below.
`sqrt 3 x^2 + 4x + sqrt 3`
Factorize the following polynomial.
(x2 – 2x + 3) (x2 – 2x + 5) – 35
Factorise:
x2 + 9x + 18
Factorise the following:
9x2 – 12x + 3
If both x – 2 and `x - 1/2` are factors of px2 + 5x + r, show that p = r.