Advertisements
Advertisements
Question
Factorize the following polynomial.
(x2 – 2x + 3) (x2 – 2x + 5) – 35
Solution
(x2 – 2x + 3) (x2 – 2x + 5) – 35
Let x2 – 2x = z
∴ (x2 - 2x + 3) (x2 - 2x + 5) - 35
= (z + 3) (z + 5) - 35
= z2 + 5z + 3z + 15 - 35
= z2 + 8z - 20
= z2 + 10z - 2z - 20
= z (z + 10) - 2 (z + 10)
= (z + 10) (z - 2)
= (x2 - 2x + 10) (x2 - 2x - 2) (Replace z = x2 - 2x)
APPEARS IN
RELATED QUESTIONS
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
Find the value of k, if x – 1 is a factor of p(x) in the following case:
p(x) = x2 + x + k
Factorise:
3x2 – x – 4
Factorise:
x3 – 2x2 – x + 2
Determine the following polynomial has (x + 1) a factor:
`x^3-x^2-(2+sqrt2)x+sqrt2`
Find the factor of the polynomial given below.
`1/2x^2 - 3x + 4`
Factorize the following polynomial.
(x2 – 6x)2 – 8 (x2 – 6x + 8) – 64
Factorise the following:
1 – 64a3 – 12a + 48a2
Factorise the following:
`8p^3 + 12/5 p^2 + 6/25 p + 1/125`
Factorise:
`2sqrt(2)a^3 + 8b^3 - 27c^3 + 18sqrt(2)abc`