Advertisements
Advertisements
प्रश्न
For the reaction \[\ce{2NO_{(g)} + 2H_{2(g)} -> N_{2(g)} + 2H2O_{(g)}}\],
The rate law is, rate = k[NO]2 [H2].
What is the overall order of reaction?
उत्तर
The reaction is of second order in NO and first order in H2 and hence, the reaction is third order overall.
APPEARS IN
संबंधित प्रश्न
The time required for 90% completion of a certain first-order reaction is t. The time required for 99.9% completion will be _________.
Choose the most correct option.
The reaction, \[\ce{3ClO- -> ClO^-3 + 2Cl-}\] occurs in two steps,
(i) \[\ce{2ClO- -> ClO^-2}\]
(ii) \[\ce{ClO^-2 + ClO- -> ClO^-_3 + Cl-}\]
The reaction intermediate is _______.
Choose the most correct option.
The elementary reaction \[\ce{O3_{(g)} + O_{(g)} -> 2O2_{(g)}}\] is ___________.
Choose the most correct option.
For an endothermic reaction, X ⇌ Y. If Ef is the activation energy of the forward reaction and Er that for the reverse reaction, which of the following is correct?
Answer the following in one or two sentences.
For the reaction, \[\ce{CH3Br_{(aq)} + OH^{-}_{(aq)} -> CH3OH^{\ominus}_{(aq)} + Br^{\ominus}_{(aq)}}\], rate law is rate = \[\ce{k[CH3Br][OH^\ominus]}\]
How does reaction rate changes if \[\ce{[OH^\ominus]}\] is decreased by a factor of 5?
Answer the following in brief.
For the reaction 2A + B → products, find the rate law from the following data.
[A]/M | [B]/M | rate/M s-1 |
0.3 | 0.05 | 0.15 |
0.6 | 0.05 | 0.30 |
0.6 | 0.2 | 1.20 |
Answer the following in one or two sentences.
For the reaction,
\[\ce{CH3Br_{(aq)} + OH^-_{ (aq)} -> CH3OH^-_{ (aq)} + Br^-_{ (aq)}}\], rate law is rate = k`["CH"_3"Br"]["OH"^-]`
What is the change in rate if concentrations of both reactants are doubled?
Write four key points about order of reaction.
For the reaction 2A + B → C, rate of disappearance of A 0.076 mol s –1.
- What is the rate of formation of C?
- What is the rate of consumption of B?
- What is the rate of the overall reaction?
In a hypothetical reaction,
\[\ce{2A + B -> Products}\]. Rate = k [A]2 [B]
Molar concentration of 'B' is kept constant and molar concentration of 'A' is tripled, then the rate of reaction will ____________.
For the non-stoichiometric reaction
\[\ce{2A + B -> C + D}\], the following kinetic data were obtained in three separate experiments, all at 298 K.
Initial concentration (A) |
Initial concentration (B) |
Initial rate of formation of C (mol dm−3 s−1) |
0.1 M | 0.1 M | 1.2 × 10−3 |
0.1 M | 0.2 M | 1.2 × 10−3 |
0.2 M | 0.1 M | 2.4 × 10−3 |
The rate law for the formation of C is:
For a chemical reaction rate law is, rate = k[A]2[B]. If [A] is doubled at constant [B], the rate of reaction ______.
Select the rate law that corresponds to the data shown for the following reaction:
Exp. | [A] mol dm−3 |
[B] mol dm−3 |
Initial Rate mol dm−3 |
1. | 0.012 | 0.035 | 0.10 |
2. | 0.024 | 0.070 | 0.80 |
3. | 0.024 | 0.035 | 0.10 |
4. | 0.012 | 0.070 | 0.80 |
The rate law for the reaction \[\ce{A + B + C -> Product}\] is expressed as Rate = k[A]2 [B]1 [C]0. What is the overall order of the reaction?
The rate law for the reaction \[\ce{2NO_{(g)} + O2_{(g)} -> 2NO2_{(g)}}\] is rate = k[NO]2 [O2] , then which among the following statement is correct?
The reaction \[\ce{A + B -> P}\], is second order in A and first order in B. What is the rate law for the reaction?
What is the order of reaction for decomposition of gaseous acetaldehyde?
In the reaction \[\ce{2SO_{2_{(g)}} O_{2_{(g)}} -> 2SO_{3_{(g)}}}\], the rate of disappearance of SO2 is 1.28 × 10-5 M/s. What is the rate of appearance of SO3?
For the reaction \[\ce{2A + B -> 3C + D}\], which among the following is NOT the correct rate law expression?
For the reaction \[\ce{4NH3 + 5O2 -> 4NO + 6H2O}\], the rate of disappearance of NH3 is 3.6 × 10-3 M/s. What is the rate of formation of water?
The correct order of raaii of F, F-, O and O2- is ______.
Write the rate law for the following reaction:
A reaction that is zero order in A and second order in B.
For the reaction A + B → P.
If [B] is doubled at constant [A], the rate of reaction doubled. If [A] is triple and [B] is doubled, the rate of reaction increases by a factor of 6. Calculate the rate law equation.