Advertisements
Advertisements
प्रश्न
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
सभी प्राकृत संख्याओं n ≥ 3 के लिए 2n + 1 < 2n.
उत्तर
मान लीजिए कि P(n) प्रदत्त कथन है, अर्थात् सभी प्राकृत संख्याओं n ≥ 3 के लिए P(n) : (2n + 1) < 2n हम देखते हैं कि P(3) सत्य है,
क्योंकि
2.3 + 1 = 7 < 8 = 23
मान लीजिए कि किसी प्राकृत संख्या k के लिए P(n) सत्य है, अर्थात् 2k + 1 < 2k P(k + 1) को सत्य सिद्ध करने के लिए, हमें सिद्ध करना है कि 2(k + 1) + 1 < 2k+1
अब, 2(k + 1) + 1 = 2k + 3
= 2k + 1 + 2 < 2k + 2 < 2k . 2 = 2k + 1.
अतएव जब कभी P(k) सत्य है, P(k + 1) भी सत्य है।
अतः, सभी प्राकृत संख्याओं n ≥ 3 के लिए, गणितीय आगमन के सिद्धांत द्वारा P(n) सत्य है।
APPEARS IN
संबंधित प्रश्न
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = `(n(n+1)(n+2)(n+3))/4`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1.3 + 2.3^2 + 3.3^3 + .... + n.3^n = ((2n - 1)3^(n +1) + 3)/4`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
1.2 + 2.22 + 3.22 + ………. + n.2n = (n – 1). 2n+1 + 2
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5) + ...+ 1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1+2+ 3+...+n<1/8(2n +1)^2`
x2n – y2n, (x + y) से भाज्य है।
41n – 14n, संख्या 27 का एक गुणज है।
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
सभी प्राकृत संख्याओं n ≥ 2 के लिए, `(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`
बीजगणित (algebra) के वितरण नियम द्वारा सभी वास्तविक संख्याओं c, a1 और a2 के लिए, c(a1 + a2) = ca1 + ca2. इस वितरण नियम तथा गणितीय आगमन का प्रयोग करके, सिद्ध कीजिए कि, सभी प्राकृत संख्याओं n ≥ 2, के लिए, यदि c, a1, a2,..., an वास्तविक संख्याएँ हैं, तो c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can
मान लीजिए कि P(n) : “2n < (1 × 2 × 3 × ... × n)”, तो न्यूनतम धन पूर्णाक, जिसके लिए P(n) सत्य है,
बताइए कि गणितीय आगमन द्वारा कथन P(n) : 12 + 22 + ... + n2 = `(n(n + 1)(2n + 1))/6` की निम्नलिखित उपपत्ति सत्य है या असत्य है।
उपपत्ति गणितीय आगमन के सिद्धांत द्वारा n = 1 के लिए P(n) सत्य है, क्योंकि
`1^2 = 1 = (1(1 + 1)(2.1 + 1))/6` पुन: किसी k ≥ 1 के लिए k2 = `(k(k + 1)(2k + 1))/6`
अब हम सिद्ध करेंगे कि `(k + 1)^2 = ((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`
किसी ऐसे कथन P(n) का उदाहरण दीजिए जो n के सभी मानों के लिए सत्य है। अपने उत्तर का औचित्य बताइए।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n ≥ 5 के लिए, n2 < 2n.
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n ≥ 2 के लिए, `sqrtn<1/sqrt1+1/sqrt2+…+1/sqrtn`
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 2 + 4 + 6 + ... + 2n = n2 + n.
सभी प्राकृत संख्या k ≥ 2 के लिए, एक अनुक्रम a1, a2, a3 ...., a1 = 3 तथा ak = 7ak − 1 द्वारा परिभाषित है। सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए an = 3.7n−1.
सभी प्राकृत संख्या k के लिए एक अनुक्रम b0, b1, b2 ...., b0 = 5 तथा bk = 4 + bk − 1 द्वारा परिभाषित है। गणितीय आगमन के प्रयोग द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए bn = 5 + 4n.
सभी प्राकृत संख्या k ≥ 2 के लिए अनुक्रम d1, d2, d3 ..., d1 = 2 तथा `d_k = (d_{k - 1})/k` द्वारा परिभाषित है। सिद्ध कीजिए कि सभी n ∈ N के लिए, `d_n = 2/(n!)`.
सभी n ∈ N के लिए, सिद्ध कीजिए कि, cosθ cos2θ cos22θ ... cos2n−1θ = `(sin2^nθ)/(2^nsinθ)`.
सभी n ∈ N के लिए, सिद्ध कीजिए कि, `sintheta + sin2theta + sin3theta + ... + sinntheta = ((sin ntheta)/2 sin(n + 1)/2theta)/(sin theta/2)`
सभी प्राकृत संख्या n > 1 के लिए सिद्ध कीजिए कि `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`.
यदि P(n) : 2n < n!, n ∈ N, तो P(n) सभी n ≥ ______ के लिए सत्य है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है। औचित्य भी बताइए:
मान लीजिए कि P(n) एक कथन है और मान लीजिए कि किसी प्राकृत संख्या k के लिए P(k) ⇒ P(k + 1), तो P(n) सभी n ∈ N के लिए सत्य है।