मराठी

गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए: सभी प्राकृत संख्या n ≥ 5 के लिए, n2 < 2n. - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n ≥ 5 के लिए, n2 < 2n.

सिद्धांत

उत्तर

देखिए, प्रत्येक प्राकृतिक संख्या P(n) : n2 < 2n के लिए यह n ≥ 5 से विभाज्य है।

अब, P(5) : 52 < 25 और 25 < 32 सही है।

इसलिए, P(5)सही है।

आइए हम मान लें कि कुछ प्राकृतिक संख्या n = k के लिए P(n) यह सही है।

∴ P(k) : k2 < 2k .........(i)

साबित करो, P(k + 1) सही है।

(​​k + 1)2 = k2 + 2k + 1 < 2k + 2k + 1​ .......(ii)​

2k + 2k + 1 < 2k + 1 ..........(iii)

∴ 2k + 2k + 1 < 2 × 2k​​

2k + 1 < 2k, जो सभी k > 5 के लिए सत्य है।

समीकरण (ii) और (iii) का उपयोग करें,

(k + 1)2 < 2k + 1

इसलिये,जहाँ भी P(k) सत्य है P(k + 1) सत्य है।

इसलिए, गणितीय प्रेरण के सिद्धांत P(n) से सभी प्राकृतिक संख्याओं n के लिए सही है, n ≥ 5

shaalaa.com
गणितीय आगमन का सिद्धांत
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: गणितीय आगमन का सिद्धांत - प्रश्नावली [पृष्ठ ७१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 4 गणितीय आगमन का सिद्धांत
प्रश्नावली | Q 11. | पृष्ठ ७१

संबंधित प्रश्‍न

सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:

`1^3 +  2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि  `1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5) + ...+ 1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`(1+3/1)(1+ 5/4)(1+7/9)...(1 + ((2n + 1))/n^2) = (n + 1)^2`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/((2n + 1)(2n +3)) = n/(3(2n +3))`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1+2+ 3+...+n<1/8(2n +1)^2`


n(n + 1)(n + 5), संख्या 3 का एक गुणज है।


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

सभी प्राकृत संख्याओं n ≥ 2 के लिए सिद्ध कीजिए कि `sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

सभी प्राकृत संख्याओं n ≥ 3 के लिए 2n + 1 < 2n.


गणितीय आगमन के सिद्धान्त द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए, 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1


बताइए कि गणितीय आगमन द्वारा कथन P(n) : 12 + 22 + ... + n2 = `(n(n + 1)(2n + 1))/6` की निम्नलिखित उपपत्ति सत्य है या असत्य है।

उपपत्ति गणितीय आगमन के सिद्धांत द्वारा n = 1 के लिए P(n) सत्य है, क्योंकि

`1^2 = 1 = (1(1 + 1)(2.1 + 1))/6` पुन: किसी k ≥ 1 के लिए k2 = `(k(k + 1)(2k + 1))/6`

अब हम सिद्ध करेंगे कि `(k + 1)^2 = ((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`


एक ऐसे कथन P(n) का उदाहरण दीजिए, जो सभी n ≥ 4 के लिए सत्य है किंतु P(1), P(2) तथा P(3) सत्य नहीं है। अपने उत्तर का औचित्य भी बताइए।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

प्रत्येक प्राकृत संख्या n के लिए, 4n − 1 संख्या 3 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

प्रत्येक प्राकृत संख्या n ≥ 2 के लिए, n3 − n, संख्या 6 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, 2n < (n + 2)!


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, 2 + 4 + 6 + ... + 2n = n2 + n.


सभी प्राकृत संख्या k ≥ 2 के लिए, एक अनुक्रम a1, a2, a3 ...., a1 = 3 तथा ak = 7ak − 1 द्वारा परिभाषित है। सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए an = 3.7n−1.


सभी प्राकृत संख्या k के लिए एक अनुक्रम b0, b1, b2 ...., b0 = 5 तथा bk = 4 + bk − 1 द्वारा परिभाषित है। गणितीय आगमन के प्रयोग द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए bn = 5 + 4n.


सभी n ∈ N के लिए, सिद्ध कीजिए कि,

cosα + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n  - 1)/2)beta)sin((nbeta)/2))/(sin  beta/2)`


सभी n ∈ N के लिए, सिद्ध कीजिए कि, `n^5/5 + n^3/3 + (7n)/15` एक प्राकृत संख्या है।


सभी n ∈ N के लिए, सिद्ध कीजिए कि n भिन्न-भिन्न distinct अवयव वाले (अंतर्विष्ट किए हुए) समुच्चय के उपसमुच्चयों की संख्या 2n है।


सभी n ∈ N के लिए, `3.5^{2n + 1} + 2^{3n + 1}`, निम्नलिखित में से किस संख्या से भाज्य है:


यदि xn − 1.x − k, से भाज्य है, तो k का न्यूनतम पूर्णांक है:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×