Advertisements
Advertisements
प्रश्न
सभी n ∈ N के लिए, `3.5^{2n + 1} + 2^{3n + 1}`, निम्नलिखित में से किस संख्या से भाज्य है:
पर्याय
19
17
23
25
उत्तर
17
स्पष्टीकरण:
मान लें कि, P(n) : `3.5^{2n + 1} + 2^{3n + 1}`
n = 1 रखो,
P(1) : `3.5^{2 + 1} + 2^{3 + 1}`
P(1) : 375 + 16
P(1) : 391
P(1) : 17 × 23
n = 2 रखो,
P(2) : `3.5^{4 + 1} + 2^{6 + 1}`
P(2) : 9375 + 256
P(2) : 9503
P(2) : 17 × 559 जो 17 से विभाज्य है।
इसलिए, सभी n ∈ N के लिए, `3.5^{2n + 1} + 2^{3n + 1}`, 17 से विभाज्य है।
APPEARS IN
संबंधित प्रश्न
सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:
`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि `1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
1.2 + 2.22 + 3.22 + ………. + n.2n = (n – 1). 2n+1 + 2
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`(1+3/1)(1+ 5/4)(1+7/9)...(1 + ((2n + 1))/n^2) = (n + 1)^2`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/((2n + 1)(2n +3)) = n/(3(2n +3))`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1+2+ 3+...+n<1/8(2n +1)^2`
n(n + 1)(n + 5), संख्या 3 का एक गुणज है।
41n – 14n, संख्या 27 का एक गुणज है।
(2n + 7) < (n+ 3)2
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
1 + 3 + 5 + ... + (2n – 1) = n2
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
22n - 1 संख्या 3 से भाज्य है।
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
सभी प्राकृत संख्याओं n ≥ 3 के लिए 2n + 1 < 2n.
किसी ऐसे कथन P(n) का उदाहरण दीजिए जो n के सभी मानों के लिए सत्य है। अपने उत्तर का औचित्य बताइए।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 23n − 1, संख्या 7 से भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, n3 − 7n + 3, संख्या 3 भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
किसी प्राकृत संख्या n के लिए, xn − yn, x − y से भाज्य है, जहाँ x तथा y पूर्णांक है और x ≠ y.
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
प्रत्येक प्राकृत संख्या n ≥ 2 के लिए, n3 − n, संख्या 6 से भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
प्रत्येक प्राकृत संख्या n के लिए, n(n2 + 5), संख्या 6 से भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 2n < (n + 2)!
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n ≥ 2 के लिए, `sqrtn<1/sqrt1+1/sqrt2+…+1/sqrtn`
सभी n ∈ N के लिए, सिद्ध कीजिए कि, `n^5/5 + n^3/3 + (7n)/15` एक प्राकृत संख्या है।
यदि सभी n ∈ N के लिए, 10n + 3.4n + 2 + k, संख्या 9 से भाज्य है, तो k का लघुतम पूर्णांक मान ______।
यदि xn − 1.x − k, से भाज्य है, तो k का न्यूनतम पूर्णांक है:
यदि P(n) : 2n < n!, n ∈ N, तो P(n) सभी n ≥ ______ के लिए सत्य है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है। औचित्य भी बताइए:
मान लीजिए कि P(n) एक कथन है और मान लीजिए कि किसी प्राकृत संख्या k के लिए P(k) ⇒ P(k + 1), तो P(n) सभी n ∈ N के लिए सत्य है।