मराठी

सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि 1+1(1+2)+1(1+2+3)+...+1(1+2+3+...n)=2nn+1 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि  `1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`

बेरीज

उत्तर

मान लो की दिया गया कथन हो P(n), अर्थात,

`P(n) 1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`

n = 1 के लिए, हमारे पास है

P(1) = `P(1): 1 = (2.1)/(1+1) = 2/2 = 1`

जो की सत्य है।
किसी धन पूर्णांक k के लिए कल्पना कीजिये की P(k) सत्य है, अर्थात

`1 + (1)/(1 + 2) + (1)/(1 + 2 + 3) +.... + (1)/(1 + 2 +3 + ...k ) = (2(k))/(k+1)`

अब यह सिद्ध करेंगे P(K+1) भी सत्य है,
विचार करें

`1 + (1)/(1 +2) + (1)/(1 + 2 + 3) + ....+ (1)/(1 + 2 + 3 + ......k + k + 1) = (2(k +1))/(k + 1 + 1)`

= `1 + (1)/(1 + 2) + (1)/(1 + 2 +3) + .... + (1)/(1 + 2 + 3 + .... k) + (1)/(1 + 2 + 3+ .... k + k +1)`

= `(2k)/(k + 1) + (1)/(1 + 2 + 3 + .... k + k +1)`

= `(2k)/(k + 1) + (2k)/((k +1)(k + 2)n)`

= `2/(k + 1)[k + (1)/(k + 2)]`

= `2/(k + 1) [(k(k + 2) + 1)/(k +2)]`

= `2 (k +1)[ (k + 1)^2/(k + 2)]`

= `(2(k + 1))/(k + 2)`

इससे सिद्ध हुआ कि P(n), n = k + 1 के लिए सत्य है।
अतः गणितीय आगमन सिद्धांत के अनुसार P(n), n ϵ N, n के सभी मानों के लिए सत्य है।

shaalaa.com
गणितीय आगमन का सिद्धांत
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: गणितीय आगमन का सिद्धांत - प्रश्नावली 4.1 [पृष्ठ १०२]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
पाठ 4 गणितीय आगमन का सिद्धांत
प्रश्नावली 4.1 | Q 3. | पृष्ठ १०२

संबंधित प्रश्‍न

सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/4`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1.3 + 2.3^2 + 3.3^3 + .... + n.3^n = ((2n - 1)3^(n +1) + 3)/4`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: 

1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

1.2 + 2.22 + 3.22 + ………. + n.2n = (n – 1). 2n+1 + 2


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5) + ...+ 1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`(1+3/1)(1+ 5/4)(1+7/9)...(1 + ((2n + 1))/n^2) = (n + 1)^2`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


n(n + 1)(n + 5), संख्या 3 का एक गुणज है।


x2n – y2n, (x + y) से भाज्य है।


41n – 14n, संख्या 27 का एक गुणज है।


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

सभी प्राकृत संख्याओं n ≥ 2 के लिए सिद्ध कीजिए कि `sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

22n - 1 संख्या 3 से भाज्य है।


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

सभी प्राकृत संख्याओं n ≥ 3 के लिए 2n + 1 < 2n.


बीजगणित (algebra) के वितरण नियम द्वारा सभी वास्तविक संख्याओं c, a1 और a2 के लिए, c(a1 + a2) = ca1 + ca2. इस वितरण नियम तथा गणितीय आगमन का प्रयोग करके, सिद्ध कीजिए कि, सभी प्राकृत संख्याओं n ≥ 2, के लिए, यदि c, a1, a2,..., an वास्तविक संख्याएँ हैं, तो c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can


आगमन विधि द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्याओं n के लिए, sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β)

= `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


गणितीय आगमन के सिद्धांत द्वारा सिद्ध कीजिए कि श्रेणी (series), 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... के n पदों का योगफल Sn, निम्नलिखित प्रकार है, Sn = `{{:((n(n + 1)^2)/2",",  "यदि n सम है"),((n^2(n + 1))/2",",  "यदि n विषम है"):}`


मान लीजिए कि P(n) : “2n < (1 × 2 × 3 × ... × n)”, तो न्यूनतम धन पूर्णाक, जिसके लिए P(n) सत्य है,


बताइए कि गणितीय आगमन द्वारा कथन P(n) : 12 + 22 + ... + n2 = `(n(n + 1)(2n + 1))/6` की निम्नलिखित उपपत्ति सत्य है या असत्य है।

उपपत्ति गणितीय आगमन के सिद्धांत द्वारा n = 1 के लिए P(n) सत्य है, क्योंकि

`1^2 = 1 = (1(1 + 1)(2.1 + 1))/6` पुन: किसी k ≥ 1 के लिए k2 = `(k(k + 1)(2k + 1))/6`

अब हम सिद्ध करेंगे कि `(k + 1)^2 = ((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`


एक ऐसे कथन P(n) का उदाहरण दीजिए, जो सभी n ≥ 4 के लिए सत्य है किंतु P(1), P(2) तथा P(3) सत्य नहीं है। अपने उत्तर का औचित्य भी बताइए।


किसी ऐसे कथन P(n) का उदाहरण दीजिए जो n के सभी मानों के लिए सत्य है। अपने उत्तर का औचित्य बताइए।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, n3 − 7n + 3, संख्या 3 भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

किसी प्राकृत संख्या n के लिए 7n − 2n संख्या 5 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, 2n < (n + 2)!


सभी n ∈ N के लिए, सिद्ध कीजिए कि,

cosα + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n  - 1)/2)beta)sin((nbeta)/2))/(sin  beta/2)`


सभी n ∈ N के लिए, सिद्ध कीजिए कि n भिन्न-भिन्न distinct अवयव वाले (अंतर्विष्ट किए हुए) समुच्चय के उपसमुच्चयों की संख्या 2n है।


यदि xn − 1.x − k, से भाज्य है, तो k का न्यूनतम पूर्णांक है:


यदि P(n) : 2n < n!, n ∈ N, तो P(n) सभी n ≥ ______ के लिए सत्य है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×