मराठी

एक ऐसे कथन P(n) का उदाहरण दीजिए, जो सभी n ≥ 4 के लिए सत्य है किंतु P(1), P(2) तथा P(3) सत्य नहीं है। अपने उत्तर का औचित्य भी बताइए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक ऐसे कथन P(n) का उदाहरण दीजिए, जो सभी n ≥ 4 के लिए सत्य है किंतु P(1), P(2) तथा P(3) सत्य नहीं है। अपने उत्तर का औचित्य भी बताइए।

बेरीज

उत्तर

जानिए कि दिए गए प्रश्न के अनुसार।

P(n) : 3n < n! कथन पर विचार करें,

n = 1, 3x1 < 1! के लिए, जो सच नहीं है।

n = 2, 3x2 < 2! के लिए, जो सच नहीं है।

n = 3, 3x3 < 3! के लिए, जो सच नहीं है।

n = 4, 3x4 < 4! के लिए, जो सच है।

n = 5, 3x5 < 5! के लिए, जो सच है।

इसलिए, जो n = 2, 3, 4, 5, ​P(n) सभी के लिए सही है, लेकिन P(1), P(2) और P(3) सत्य नहीं हैं।

shaalaa.com
गणितीय आगमन का सिद्धांत
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: गणितीय आगमन का सिद्धांत - प्रश्नावली [पृष्ठ ७०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 4 गणितीय आगमन का सिद्धांत
प्रश्नावली | Q 1. | पृष्ठ ७०

संबंधित प्रश्‍न

सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि  `1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/4`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: 

1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`


102n-1 + 1, संख्या 11 से भाज्य है।


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

1 + 3 + 5 + ... + (2n – 1) = n2


किसी अनुक्रम a1, a2, a3... को इस प्रकार परिभाषित कीजिए कि a1 = 2, a= 5 an–1. जो सभी प्राकृत संख्याओं n ≥ 2 के लिए,

गणितीय आगमन के सिद्धांत का प्रयोग करके सिद्ध कीजिए कि सभी प्राकृत संख्याओं के लिए, अनुक्रम के पद, सूत्र an = 2.5n–1 को संतुष्ट करते हैं।


गणितीय आगमन के सिद्धान्त द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए, 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1


मान लीजिए कि P(n) : “2n < (1 × 2 × 3 × ... × n)”, तो न्यूनतम धन पूर्णाक, जिसके लिए P(n) सत्य है,


एक विद्यार्थी को किसी कथन P(n) को गणितीय आगमन द्वारा सिद्ध करने के लिए कहा गया। उसने सिद्ध किया कि, सभी k > 5 ∈ N के लिए P(k + 1) सत्य है, जब कभी P(k) सत्य है और यह कि P(5) भी सत्य है। इसके आधार पर उसने निष्कर्ष निकाला कि P(n) सत्य है,


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

प्रत्येक प्राकृत संख्या n के लिए, 4n − 1 संख्या 3 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए 32n − 1 संख्या 8 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

किसी प्राकृत संख्या n के लिए, xn − yn, x − y से भाज्य है, जहाँ x तथा y पूर्णांक है और x ≠ y.


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

प्रत्येक प्राकृत संख्या n ≥ 2 के लिए, n3 − n, संख्या 6 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n ≥ 5 के लिए, n2 < 2n.


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, 2 + 4 + 6 + ... + 2n = n2 + n.


सभी n ∈ N के लिए, सिद्ध कीजिए कि,

cosα + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n  - 1)/2)beta)sin((nbeta)/2))/(sin  beta/2)`


सभी n ∈ N के लिए, सिद्ध कीजिए कि, cosθ cos2θ cos22θ ... cos2n−1θ = `(sin2^nθ)/(2^nsinθ)`.


सभी n ∈ N के लिए, सिद्ध कीजिए कि, `sintheta + sin2theta + sin3theta + ... + sinntheta = ((sin  ntheta)/2 sin(n + 1)/2theta)/(sin  theta/2)`


यदि xn − 1.x − k, से भाज्य है, तो k का न्यूनतम पूर्णांक है:


यदि P(n) : 2n < n!, n ∈ N, तो P(n) सभी n ≥ ______ के लिए सत्य है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×