Advertisements
Advertisements
प्रश्न
सभी n ∈ N के लिए, सिद्ध कीजिए कि, `sintheta + sin2theta + sin3theta + ... + sinntheta = ((sin ntheta)/2 sin(n + 1)/2theta)/(sin theta/2)`
उत्तर
P(n) : sinθ + sin2θ + sin3θ + ... + sinnθ
= `(sin (ntheta)/2 * sin ((n + 1)/2) theta)/(sin theta/2)`, ∀ n ∈ N.
देखिए
⇒ P(1) : sinθ = `(sin theta/2 . sin ((1 + 1)/2)theta)/(sin theta/2)`
= `(sin theta/2 . sin theta)/(sin theta/2)`
= sinθ
इसलिए, P(1) के लिए यह सच है।
⇒ P(k) : sinθ + sin2θ + sin3θ + ... + sinkθ
= `(sin (ktheta)/2 * sin ((k + 1)/2)theta)/(sin theta/2)`
इसलिये, P(k) के लिये यह सच है।
P(k + 1) : sinθ + sin2θ + sin3θ + ... + sin(k + 1)θ
= `(sin (ktheta)/2 * sin ((k + 1)/2)theta)/(sin theta/2) + sin(k + 1)theta`
= `(sin (ktheta)/2 * sin ((k + 1)/2)theta + sin(k + 1)theta * sin theta/2)/(sin theta/2)`
= `(2sin (ktheta)/2 * sin ((k + 1)/2)theta + sin (k + 1)theta * sin theta/2)/(sin theta/2)`
आगे हल करें।
= `(cos((ktheta)/2 - (k + 1)/2 theta) - cos((ktheta)/2 + (k + 1)/2 theta) + cos[(k + 1)theta - theta/2] - [cos[(k + 1)theta + theta/2]))/(2sin theta/2)`
= `(cos(theta/2) - cos(ktheta + (3theta)/2))/(2sin theta/2)`
= `(-2sin((theta + ktheta + 3theta)/2).sin((theta - ktheta - 3theta)/2))/(2sin theta/2)`
= `(sin((ktheta + 2theta)/2).sin((ktheta + 2theta)/2))/(sin theta/2)`
आगे हल करें।
इसलिये, P(k + 1) के लिये यह सच है।
इसलिये, P(k) जब भी सत्य हो, P(k + 1) सत्य है।
यह साबित होता है कि, सभी प्राकृतिक संख्याओं के लिए `sintheta + sin2theta + sin3theta + ... + sinntheta = (sin (ntheta)/2 .sin((n + 1)/2)theta)/(sin theta/2)` सही है।
APPEARS IN
संबंधित प्रश्न
सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि `1+ 1/((1+2)) + 1/((1+2+3)) +...+ 1/((1+2+3+...n)) = (2n)/(n +1)`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1.3 + 2.3^2 + 3.3^3 + .... + n.3^n = ((2n - 1)3^(n +1) + 3)/4`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
1.2 + 2.22 + 3.22 + ………. + n.2n = (n – 1). 2n+1 + 2
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5) + ...+ 1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`(1+3/1)(1+ 5/4)(1+7/9)...(1 + ((2n + 1))/n^2) = (n + 1)^2`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1+2+ 3+...+n<1/8(2n +1)^2`
x2n – y2n, (x + y) से भाज्य है।
32n+2 – 8n- 9, संख्या 8 से भाज्य है।
(2n + 7) < (n+ 3)2
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
सभी प्राकृत संख्याओं n ≥ 2 के लिए, `(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`
किसी अनुक्रम a1, a2, a3... को इस प्रकार परिभाषित कीजिए कि a1 = 2, an = 5 an–1. जो सभी प्राकृत संख्याओं n ≥ 2 के लिए,
गणितीय आगमन के सिद्धांत का प्रयोग करके सिद्ध कीजिए कि सभी प्राकृत संख्याओं के लिए, अनुक्रम के पद, सूत्र an = 2.5n–1 को संतुष्ट करते हैं।
मान लीजिए कि P(n) : “2n < (1 × 2 × 3 × ... × n)”, तो न्यूनतम धन पूर्णाक, जिसके लिए P(n) सत्य है,
बताइए कि गणितीय आगमन द्वारा कथन P(n) : 12 + 22 + ... + n2 = `(n(n + 1)(2n + 1))/6` की निम्नलिखित उपपत्ति सत्य है या असत्य है।
उपपत्ति गणितीय आगमन के सिद्धांत द्वारा n = 1 के लिए P(n) सत्य है, क्योंकि
`1^2 = 1 = (1(1 + 1)(2.1 + 1))/6` पुन: किसी k ≥ 1 के लिए k2 = `(k(k + 1)(2k + 1))/6`
अब हम सिद्ध करेंगे कि `(k + 1)^2 = ((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`
एक ऐसे कथन P(n) का उदाहरण दीजिए, जो सभी n ≥ 4 के लिए सत्य है किंतु P(1), P(2) तथा P(3) सत्य नहीं है। अपने उत्तर का औचित्य भी बताइए।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, n3 − 7n + 3, संख्या 3 भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n ≥ 2 के लिए, `sqrtn<1/sqrt1+1/sqrt2+…+1/sqrtn`
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 1 + 2 + 22 + ... + 2n = 2n + 1 − 1.
सभी प्राकृत संख्या k ≥ 2 के लिए, एक अनुक्रम a1, a2, a3 ...., a1 = 3 तथा ak = 7ak − 1 द्वारा परिभाषित है। सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए an = 3.7n−1.
सभी n ∈ N के लिए, सिद्ध कीजिए कि, cosθ cos2θ cos22θ ... cos2n−1θ = `(sin2^nθ)/(2^nsinθ)`.
सभी प्राकृत संख्या n > 1 के लिए सिद्ध कीजिए कि `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`.
सभी n ∈ N के लिए, `3.5^{2n + 1} + 2^{3n + 1}`, निम्नलिखित में से किस संख्या से भाज्य है:
यदि xn − 1.x − k, से भाज्य है, तो k का न्यूनतम पूर्णांक है:
बताइए कि निम्नलिखित कथन सत्य है या असत्य है। औचित्य भी बताइए:
मान लीजिए कि P(n) एक कथन है और मान लीजिए कि किसी प्राकृत संख्या k के लिए P(k) ⇒ P(k + 1), तो P(n) सभी n ∈ N के लिए सत्य है।