Advertisements
Advertisements
प्रश्न
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1+2+ 3+...+n<1/8(2n +1)^2`
उत्तर
माना P(n) `1+2+ 3 +...+n<1/8(2n +1)^2`
n = 1 के लिए बायाँ पक्ष = 1
दायाँ पक्ष = `1/8 (2n +1)^2`
= `1/8 xx 3^2 = 9/8`
< `9/8`
⇒ P(n), n = 1 के लिए सत्य है।
मान लीजिए P(n), n = k के लिए सत्य है।
∴ `1+2+ 3 +...+k<1/8(2k +1)^2`
(k +1) वाँ पद = k + 1 दोनों के पक्षों में जोड़ने पर,
बायाँ पक्ष = 1 + 2 + 3 +...+ k + (k+1)
`1/8 (2k +1)^2 + (k + 1) = 1/8 [(2k + 1)^2 + 8 (k + 1)]`
= `1/8 [4k^2 + 4k + 1 + 8k + 8]`
= `1/8 [4k^2 + 12k +9]`
= `1/8 (2k +3)^2 = 1/8 [2(k + 1) + 1]^2`
∴ `1+2+ 3+...+k<1/8[2(k +1)]^2`
⇒ P(n) , n = k + 1 के लिए सत्य है।
अतः गणितीय आगमन सिद्धांत के अनुसार P(n), n ϵ N, n के सभी मानों के लिए सत्य है।
APPEARS IN
संबंधित प्रश्न
सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:
`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`
सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: `1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`
102n-1 + 1, संख्या 11 से भाज्य है।
32n+2 – 8n- 9, संख्या 8 से भाज्य है।
(2n + 7) < (n+ 3)2
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
1 + 3 + 5 + ... + (2n – 1) = n2
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
सभी प्राकृत संख्याओं n ≥ 2 के लिए, `(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
22n - 1 संख्या 3 से भाज्य है।
किसी अनुक्रम a1, a2, a3... को इस प्रकार परिभाषित कीजिए कि a1 = 2, an = 5 an–1. जो सभी प्राकृत संख्याओं n ≥ 2 के लिए,
गणितीय आगमन के सिद्धांत का प्रयोग करके सिद्ध कीजिए कि सभी प्राकृत संख्याओं के लिए, अनुक्रम के पद, सूत्र an = 2.5n–1 को संतुष्ट करते हैं।
बीजगणित (algebra) के वितरण नियम द्वारा सभी वास्तविक संख्याओं c, a1 और a2 के लिए, c(a1 + a2) = ca1 + ca2. इस वितरण नियम तथा गणितीय आगमन का प्रयोग करके, सिद्ध कीजिए कि, सभी प्राकृत संख्याओं n ≥ 2, के लिए, यदि c, a1, a2,..., an वास्तविक संख्याएँ हैं, तो c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can
गणितीय आगमन के सिद्धांत द्वारा सिद्ध कीजिए कि श्रेणी (series), 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... के n पदों का योगफल Sn, निम्नलिखित प्रकार है, Sn = `{{:((n(n + 1)^2)/2",", "यदि n सम है"),((n^2(n + 1))/2",", "यदि n विषम है"):}`
मान लीजिए कि P(n) : “2n < (1 × 2 × 3 × ... × n)”, तो न्यूनतम धन पूर्णाक, जिसके लिए P(n) सत्य है,
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n ≥ 5 के लिए, n2 < 2n.
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n ≥ 2 के लिए, `sqrtn<1/sqrt1+1/sqrt2+…+1/sqrtn`
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 2 + 4 + 6 + ... + 2n = n2 + n.
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 1 + 2 + 22 + ... + 2n = 2n + 1 − 1.
सभी प्राकृत संख्या k ≥ 2 के लिए, एक अनुक्रम a1, a2, a3 ...., a1 = 3 तथा ak = 7ak − 1 द्वारा परिभाषित है। सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए an = 3.7n−1.
सभी प्राकृत संख्या k के लिए एक अनुक्रम b0, b1, b2 ...., b0 = 5 तथा bk = 4 + bk − 1 द्वारा परिभाषित है। गणितीय आगमन के प्रयोग द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए bn = 5 + 4n.
सभी n ∈ N के लिए, सिद्ध कीजिए कि,
cosα + cos(α + β) + cos(α + 2β) + ... + cos(α + (n – 1)β) = `(cos(alpha + ((n - 1)/2)beta)sin((nbeta)/2))/(sin beta/2)`
सभी प्राकृत संख्या n > 1 के लिए सिद्ध कीजिए कि `1/(n + 1) + 1/(n + 2) + ... + 1/(2n) > 13/24`.
सभी n ∈ N के लिए, `3.5^{2n + 1} + 2^{3n + 1}`, निम्नलिखित में से किस संख्या से भाज्य है:
बताइए कि निम्नलिखित कथन सत्य है या असत्य है। औचित्य भी बताइए:
मान लीजिए कि P(n) एक कथन है और मान लीजिए कि किसी प्राकृत संख्या k के लिए P(k) ⇒ P(k + 1), तो P(n) सभी n ∈ N के लिए सत्य है।