मराठी

गणितीय आगमन के सिद्धान्त द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए, 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

गणितीय आगमन के सिद्धान्त द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए, 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1

सिद्धांत

उत्तर

मान लीजिए कि P(n) प्रदत्त कथन है, अर्थात्‌, सभी प्राकृत संख्याओं n के लिए

P(n) : 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1

ध्यान दीजिए कि P(1) सत्य है, क्योंकि P(1) : 1 × 1! = 1 = 2 – 1 = 2! – 1.

मान लीजिए कि किसी प्राकृत संख्या k के लिए P(n) सत्य है, अर्थात्‌,

P(k) : 1 × 1! + 2 × 2! + 3 × 3! + ... + k × k! = (k + 1)! – 1

P(k + 1) को सत्य सिद्ध करने के लिए हम देखते हैं कि,

P(k + 1) : 1 × 1! + 2 × 2! + 3 × 3! + ... + k × k! + (k + 1) × (k + 1)!

= (k + 1)! – 1 + (k + 1)! × (k + 1)

= (k + 1 + 1) (k + 1)! – 1

= (k + 2) (k + 1)! – 1 = ((k + 2)! – 1)

अतएव, जब कभी P(k) सत्य है P(k + 1) भी सत्य है। इसलिए, गणितीय आगमन के सिद्धान्त द्वारा सभी प्राकृत संख्याओं n के लिए, P(n) सत्य है।

shaalaa.com
गणितीय आगमन का सिद्धांत
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: गणितीय आगमन का सिद्धांत - हल किए हुए उदहारण [पृष्ठ ६७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 4 गणितीय आगमन का सिद्धांत
हल किए हुए उदहारण | Q 9 | पृष्ठ ६७

संबंधित प्रश्‍न

सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:

`1^3 +  2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/4`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1.3 + 2.3^2 + 3.3^3 + .... + n.3^n = ((2n - 1)3^(n +1) + 3)/4`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5) + ...+ 1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`(1+3/1)(1+ 5/4)(1+7/9)...(1 + ((2n + 1))/n^2) = (n + 1)^2`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1+2+ 3+...+n<1/8(2n +1)^2`


x2n – y2n, (x + y) से भाज्य है।


(2n + 7) < (n+ 3)2


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

सभी प्राकृत संख्याओं n ≥ 2 के लिए, `(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

22n - 1 संख्या 3 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, n3 − 7n + 3, संख्या 3 भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

प्रत्येक प्राकृत संख्या n ≥ 2 के लिए, n3 − n, संख्या 6 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

प्रत्येक प्राकृत संख्या n के लिए, n(n2 + 5), संख्या 6 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n ≥ 2 के लिए, `sqrtn<1/sqrt1+1/sqrt2+…+1/sqrtn`


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, 1 + 2 + 22 + ... + 2n = 2n + 1 − 1.


सभी प्राकृत संख्या k ≥ 2 के लिए, एक अनुक्रम a1, a2, a3 ...., a1 = 3 तथा ak = 7ak − 1 द्वारा परिभाषित है। सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए an = 3.7n−1.


सभी n ∈ N के लिए, सिद्ध कीजिए कि, cosθ cos2θ cos22θ ... cos2n−1θ = `(sin2^nθ)/(2^nsinθ)`.


सभी n ∈ N के लिए, सिद्ध कीजिए कि, `n^5/5 + n^3/3 + (7n)/15` एक प्राकृत संख्या है।


सभी n ∈ N के लिए, सिद्ध कीजिए कि n भिन्न-भिन्न distinct अवयव वाले (अंतर्विष्ट किए हुए) समुच्चय के उपसमुच्चयों की संख्या 2n है।


यदि xn − 1.x − k, से भाज्य है, तो k का न्यूनतम पूर्णांक है:


यदि P(n) : 2n < n!, n ∈ N, तो P(n) सभी n ≥ ______ के लिए सत्य है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×