मराठी

गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए: किसी प्राकृत संख्या n के लिए 7n − 2n संख्या 5 से भाज्य है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

किसी प्राकृत संख्या n के लिए 7n − 2n संख्या 5 से भाज्य है।

सिद्धांत

उत्तर

देखिए P(n) : 7n − 2n प्रत्येक प्राकृतिक संख्या n के लिए 3 से विभाज्य होने दें।

अब P(1) = 71 − 21 = 5 जो 5 से विभाज्य है, इसलिए P(1) सत्य है।

आइए हम मान लें कि P(n) कुछ प्राकृतिक n = k संख्या के लिए यह सही है।

∴ P(k) = 7k − 2k को 5 से विभाज्य होने दें।

अथवा 7k − 2k = 5m, m ∈ N ....(i)

साबित करो P(k + 1) सत्य है।

P(k + 1) : 7k + 1 − 2k + 1

= 7k − 7 − 2k − 2

= (5 + 2)7k − 2k − 2​

आगे हल करें

​= 5 × 7k + 2.7k − 2 − 2k

= 5 × 7k + 2(7k − 2k)

= 5 × 7k + 2(5m)​

= 5(7k + 2m) जो 5 से विभाज्य है। इस प्रकार, जहाँ भी P(k + 1) सत्य है वह P(k) सत्य है।

इसलिए, गणितीय प्रेरण के सिद्धांत से सभी प्राकृतिक संख्याओं n के लिए P(n) सही है।

shaalaa.com
गणितीय आगमन का सिद्धांत
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: गणितीय आगमन का सिद्धांत - प्रश्नावली [पृष्ठ ७०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 4 गणितीय आगमन का सिद्धांत
प्रश्नावली | Q 7. | पृष्ठ ७०

संबंधित प्रश्‍न

सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:

`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`


सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:

`1^3 +  2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2)  = `(n(n+1)(n+2)(n+3))/4`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1.3 + 2.3^2 + 3.3^3 + .... + n.3^n = ((2n - 1)3^(n +1) + 3)/4`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

1.2 + 2.22 + 3.22 + ………. + n.2n = (n – 1). 2n+1 + 2


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: `1/2 + 1/4 + 1/8 + ... + 1/2^n = 1 - 1/2^n`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1+2+ 3+...+n<1/8(2n +1)^2`


x2n – y2n, (x + y) से भाज्य है।


32n+2 – 8n- 9, संख्या 8 से भाज्य है।


41n – 14n, संख्या 27 का एक गुणज है।


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

सभी प्राकृत संख्याओं n ≥ 2 के लिए, `(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`


बीजगणित (algebra) के वितरण नियम द्वारा सभी वास्तविक संख्याओं c, a1 और a2 के लिए, c(a1 + a2) = ca1 + ca2. इस वितरण नियम तथा गणितीय आगमन का प्रयोग करके, सिद्ध कीजिए कि, सभी प्राकृत संख्याओं n ≥ 2, के लिए, यदि c, a1, a2,..., an वास्तविक संख्याएँ हैं, तो c(a1 + a2 + ... + an) = ca1 + ca2 + ... + can


गणितीय आगमन के सिद्धान्त द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए, 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1


गणितीय आगमन के सिद्धांत द्वारा सिद्ध कीजिए कि श्रेणी (series), 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... के n पदों का योगफल Sn, निम्नलिखित प्रकार है, Sn = `{{:((n(n + 1)^2)/2",",  "यदि n सम है"),((n^2(n + 1))/2",",  "यदि n विषम है"):}`


मान लीजिए कि P(n) : “2n < (1 × 2 × 3 × ... × n)”, तो न्यूनतम धन पूर्णाक, जिसके लिए P(n) सत्य है,


किसी ऐसे कथन P(n) का उदाहरण दीजिए जो n के सभी मानों के लिए सत्य है। अपने उत्तर का औचित्य बताइए।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, 23n − 1, संख्या 7 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, n3 − 7n + 3, संख्या 3 भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n ≥ 5 के लिए, n2 < 2n.


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n ≥ 2 के लिए, `sqrtn<1/sqrt1+1/sqrt2+…+1/sqrtn`


सभी प्राकृत संख्या k ≥ 2 के लिए, एक अनुक्रम a1, a2, a3 ...., a1 = 3 तथा ak = 7ak − 1 द्वारा परिभाषित है। सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए an = 3.7n−1.


सभी प्राकृत संख्या k के लिए एक अनुक्रम b0, b1, b2 ...., b0 = 5 तथा bk = 4 + bk − 1 द्वारा परिभाषित है। गणितीय आगमन के प्रयोग द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए bn = 5 + 4n.


सभी n ∈ N के लिए, सिद्ध कीजिए कि, `sintheta + sin2theta + sin3theta + ... + sinntheta = ((sin  ntheta)/2 sin(n + 1)/2theta)/(sin  theta/2)`


सभी n ∈ N के लिए, सिद्ध कीजिए कि n भिन्न-भिन्न distinct अवयव वाले (अंतर्विष्ट किए हुए) समुच्चय के उपसमुच्चयों की संख्या 2n है।


यदि सभी n ∈ N के लिए, 10n + 3.4n + 2 + k, संख्या 9 से भाज्य है, तो k का लघुतम पूर्णांक मान ______।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×