मराठी

(I) for the Wave on a String Described in Exercise 15.11, Do All the Points on the String Oscillate with the Same (A) Frequency, (B) Phase, (C) Amplitude? Explain Your Answers. (Ii) What is the Amplitude of a Point 0.375 M Away from One End? - Physics

Advertisements
Advertisements

प्रश्न

(i) For the wave on a string described in Exercise 15.11, do all the points on the string oscillate with the same (a) frequency, (b) phase, (c) amplitude? Explain your answers. (ii) What is the amplitude of a point 0.375 m away from one end?

उत्तर १

(i) For the wave on the string described in questions we have seen that l = 1.5 m and λ = 3 m. So, it is clear that λ = λ /2 and for a string clamped at both ends, it is possible only when both ends behave as nodes and there is only one antinode in between i.e., whole string is vibrating in one segment only.

(a) Yes, all the sring particles, except nodes, vibrate with the same frequency v = 60 Hz.

(b) As all string particles lie in one segment, all of them are in same phase.

(c) Amplitude varies from particle to particle. At antinode, amplitude = 2A = 0.06 m. It gradually falls on going towards nodes and at nodes, and at nodes, it is zero.

(ii) Amplitude at a point x = 0.375 m will be obtained by putting cos (120 πt) as + 1 in the wave equation.

`:. A(x) = 0.06 sin((2pi)/3 xx 0.375) xx 1 = 0.06 sin  pi/4= 0.042 m`

shaalaa.com

उत्तर २

(i)

(a) Yes, except at the nodes

(b) Yes, except at the nodes

(c) No

(ii) 0.042 m

Explanation:

(i)

(a) All the points on the string oscillate with the same frequency, except at the nodes which have zero frequency.

(b) All the points in any vibrating loop have the same phase, except at the nodes.

(c) All the points in any vibrating loop have different amplitudes of vibration.

(ii) The given equation is:

`y(x,t) = 0.06 sin ((2pi)/3 x) cos(120 pi t)`

For = 0.375 m and t = 0

Amplitude = Displacement = `0.06 sin((2pi)/3 x)cos 0`

`= 0.06 sin (2pi/3 xx 0.375) xx 1`

`= 0.06 sin (0.25 pi) = 0.06 sin (pi/4)`

`= 0.06 xx 1/sqrt2 = 0.042 m`

shaalaa.com
The Speed of a Travelling Wave
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Waves - Exercises [पृष्ठ ३८८]

APPEARS IN

एनसीईआरटी Physics [English] Class 11
पाठ 15 Waves
Exercises | Q 12 | पृष्ठ ३८८

संबंधित प्रश्‍न

You have learnt that a travelling wave in one dimension is represented by a function y= f (x, t)where x and t must appear in the combination x – v t or x + v t, i.e. y = f (x ± v t). Is the converse true? Examine if the following functions for y can possibly represent a travelling wave:

(a) `(x – vt )^2`

(b) `log [(x + vt)/x_0]`

(c) `1/(x + vt)`


A sine wave is travelling in a medium. A particular particle has zero displacement at a certain instant. The particle closest to it having zero displacement is at a distance


Two wave pulses travel in opposite directions on a string and approach each other. The shape of one pulse is inverted with respect to the other.


Two sine waves travel in the same direction in a medium. The amplitude of each wave is A and the phase difference between the two waves is 120°. The resultant amplitude will be


The displacement of the particle at x = 0 of a stretched string carrying a wave in the positive x-direction is given f(t) = A sin (t/T). The wave speed is  v. Write the wave equation.


A wave travelling on a string at a speed of 10 m s−1 causes each particle of the string to oscillate with a time period of 20 ms. (a) What is the wavelength of the wave? (b) If the displacement of a particle of 1⋅5 mm at a certain instant, what will be the displacement of a particle 10 cm away from it at the same instant?


A wire of length 2⋅00 m is stretched to a tension of 160 N. If the fundamental frequency of vibration is 100 Hz, find its linear mass density.


A transverse harmonic wave on a string is described by y(x, t) = 3.0 sin (36t + 0.018x + π/4) where x and y are in cm and t is in s. The positive direction of x is from left to right.

  1. The wave is travelling from right to left.
  2. The speed of the wave is 20 m/s.
  3. Frequency of the wave is 5.7 Hz.
  4. The least distance between two successive crests in the wave is 2.5 cm.

Speed of sound waves in a fluid depends upon ______.

  1. directty on density of the medium.
  2. square of Bulk modulus of the medium.
  3. inversly on the square root of density.
  4. directly on the square root of bulk modulus of the medium.

Given below are some functions of x and t to represent the displacement of an elastic wave.

  1. y = 5 cos (4x) sin (20t)
  2. y = 4 sin (5x – t/2) + 3 cos (5x – t/2)
  3. y = 10 cos [(252 – 250) πt] cos [(252 + 250)πt]
  4. y = 100 cos (100πt + 0.5x)

State which of these represent

  1. a travelling wave along –x direction
  2. a stationary wave
  3. beats
  4. a travelling wave along +x direction.

Given reasons for your answers.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×