मराठी

Speed of sound waves in a fluid depends upon ______. directty on density of the medium. square of Bulk modulus of the medium. inversly on the square root of density. - Physics

Advertisements
Advertisements

प्रश्न

Speed of sound waves in a fluid depends upon ______.

  1. directty on density of the medium.
  2. square of Bulk modulus of the medium.
  3. inversly on the square root of density.
  4. directly on the square root of bulk modulus of the medium.
रिकाम्या जागा भरा
टीपा लिहा

उत्तर

c and d

Explanation:

We define the speed of sound waves in a fluid as, `v = sqrt(B/ρ)`, Here B is the Bulk modulus and ρ is the density of the medium.

It means, `v ∝ 1/sqrt(ρ)`  ......[∴ For any fluid, B = constant]

And `v ∝ sqrt(B)`  ......[∴ For medium, ρ = constant]

shaalaa.com
The Speed of a Travelling Wave
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Waves - Exercises [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 11
पाठ 15 Waves
Exercises | Q 15.13 | पृष्ठ १०८

संबंधित प्रश्‍न

A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at 20 °C = 343 m s–1.


You have learnt that a travelling wave in one dimension is represented by a function y= f (x, t)where x and t must appear in the combination x – v t or x + v t, i.e. y = f (x ± v t). Is the converse true? Examine if the following functions for y can possibly represent a travelling wave:

(a) `(x – vt )^2`

(b) `log [(x + vt)/x_0]`

(c) `1/(x + vt)`


A wave pulse is travelling on a string with a speed \[\nu\] towards the positive X-axis. The shape of the string at t = 0 is given by g(x) = Asin(x/a), where A and a are constants. (a) What are the dimensions of A and a ? (b) Write the equation of the wave for a general time t, if the wave speed is \[\nu\].


A wave propagates on a string in the positive x-direction at a velocity \[\nu\] \[t =  t_0\] is given by \[g\left( x, t_0 \right) = A  \sin  \left( x/a \right)\]. Write the wave equation for a general time t.


A wire of length 2⋅00 m is stretched to a tension of 160 N. If the fundamental frequency of vibration is 100 Hz, find its linear mass density.


A 2⋅00 m-long rope, having a mass of 80 g, is fixed at one end and is tied to a light string at the other end. The tension in the string is 256 N. (a) Find the frequencies of the fundamental and the first two overtones. (b) Find the wavelength in the fundamental and the first two overtones.


Use the formula `v = sqrt((gamma P)/rho)` to explain why the speed of sound in air is independent of pressure.


For the travelling harmonic wave

y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)

Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of 4 m.


Speed of sound wave in air ______.


The displacement y of a particle in a medium can be expressed as, y = `10^-6sin(100t + 20x + pi/4)` m where t is in second and x in meter. The speed of the wave is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×