मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A wave propagates on a string in the positive x-direction at a velocity ν t = t 0 is given by g ( x , t 0 ) = A sin ( x / a ) . Write the wave equation for a general time t. - Physics

Advertisements
Advertisements

प्रश्न

A wave propagates on a string in the positive x-direction at a velocity \[\nu\] \[t =  t_0\] is given by \[g\left( x, t_0 \right) = A  \sin  \left( x/a \right)\]. Write the wave equation for a general time t.

बेरीज

उत्तर

Given,
Wave velocity = \[\nu\] 
Shape of the string at
\[t =  t_0\] 
\[g\left( x, t_0 \right) = A  \sin  \left( x/a \right)\]
For a wave travelling in the positive x-direction, the general equation is given by \[y = A  \sin  \left( \frac{x}{a} - \frac{t}{T} \right)\]
Putting t = − t and comparing with equation (i), we get: 

\[g\left( x, 0 \right) = A\sin\left\{ \left( \frac{x}{a} \right) + \left( \frac{t_0}{T} \right) \right\}\] 

\[ \Rightarrow g\left( x, t \right) = A\sin\left[ \left\{ \left( \frac{x}{a} \right) + \frac{t_0}{T} \right\} - \left( \frac{t}{T} \right) \right]\] 

\[Now, \] 

\[T = \frac{a}{\nu}\] 

\[Here,   \] 

a = Wave  length

nu = Velocity  of  the  wave

Thus,   we  have: 

\[y = A\sin  \left[ \left( \frac{x}{a} \right) + \frac{t_0}{\left( \frac{a}{\nu} \right)} - \frac{t}{\left( \frac{a}{\nu} \right)} \right]\]

\[\Rightarrow y = A\sin  \frac{x + \nu  \left( t_0 - t \right)}{a}\]

shaalaa.com
The Speed of a Travelling Wave
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Wave Motion and Waves on a String - Exercise [पृष्ठ ३२४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 15 Wave Motion and Waves on a String
Exercise | Q 7 | पृष्ठ ३२४

संबंधित प्रश्‍न

A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at 20 °C = 343 m s–1.


A train, standing in a station-yard, blows a whistle of frequency 400 Hz in still air. The wind starts blowing in the direction from the yard to the station with at a speed of 10 m s–1. What are the frequency, wavelength, and speed of sound for an observer standing on the station’s platform? Is the situation exactly identical to the case when the air is still and the observer runs towards the yard at a speed of 10 m s–1? The speed of sound in still air can be taken as 340 m s–1.


Earthquakes generate sound waves inside the earth. Unlike a gas, the earth can experience both transverse (S) and longitudinal (P) sound waves. Typically the speed of wave is about 4.0 km s–1, and that of wave is 8.0 km s–1. A seismograph records and waves from an earthquake. The first wave arrives 4 min before the first wave. Assuming the waves travel in straight line, at what distance does the earthquake occur?


The radio and TV programmes, telecast at the studio, reach our antenna by wave motion. Is it a mechanical wave or nonmechanical?


Show that the particle speed can never be equal to the wave speed in a sine wave if the amplitude is less than wavelength divided by 2π.


Choose the correct option:

Which of the following equations represents a wave travelling along Y-axis? 


The equation of a wave travelling on a string stretched along the X-axis is given by
\[y = A  e {}^-  \left( \frac{x}{a} + \frac{t}{T} \right)^2  .\]
(a) Write the dimensions of A, a and T. (b) Find the wave speed. (c) In which direction is the wave travelling? (d) Where is the maximum of the pulse located at t = T? At t = 2 T?


A sonometer wire supports a 4 kg load and vibrates in fundamental mode with a tuning fork of frequency 416. Hz. The length of the wire between the bridges is now doubled. In order to maintain fundamental mode, the load should be changed to


A string of length 40 cm and weighing 10 g is attached to a spring at one end and to a fixed wall at the other end. The spring has a spring constant of 160 N m−1 and is stretched by 1⋅0 cm. If a wave pulse is produced on the string near the wall, how much time will it take to reach the spring?


A 200 Hz wave with amplitude 1 mm travels on a long string of linear mass density 6 g m−1 kept under a tension of 60 N. (a) Find the average power transmitted across a given point on the string. (b) Find the total energy associated with the wave in a 2⋅0 m long portion of the string.


A 40 cm wire having a mass of 3⋅2 g is stretched between two fixed supports 40⋅05 cm apart. In its fundamental mode, the wire vibrates at 220 Hz. If the area of cross section of the wire is 1⋅0 mm2, find its Young modulus.


A man standing unsymmetrical position between two mountains and fires a gun. He hears the first echo after 1.5 s and the second echo after 2.5 s. If the speed of sound in air is 340 m/s, then the distance between the mountains will be ______ 


A string 1 m long is fixed at one end. The other end is moved up and down with a frequency of 20 Hz. Due to this, a stationary wave with four complete loops gets produced on the string. Find the speed of the progressive wave which produces the stationary wave. 


Use the formula `v = sqrt((gamma P)/rho)` to explain why the speed of sound in air increases with temperature.


A bat emits an ultrasonic sound of frequency 1000 kHz in the air. If the sound meets a water surface, what is the wavelength of the the reflected sound? The speed of sound in air is 340 m s–1 and in water 1486 m s–1.


For the travelling harmonic wave

y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)

Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of `λ/2`.


A transverse harmonic wave on a string is described by y(x, t) = 3.0 sin (36t + 0.018x + π/4) where x and y are in cm and t is in s. The positive direction of x is from left to right.

  1. The wave is travelling from right to left.
  2. The speed of the wave is 20 m/s.
  3. Frequency of the wave is 5.7 Hz.
  4. The least distance between two successive crests in the wave is 2.5 cm.

At what temperatures (in °C) will the speed of sound in air be 3 times its value at O°C?


A wave of frequency υ = 1000 Hz, propagates at a velocity v = 700 m/sec along x-axis. Phase difference at a given point x during a time interval M = 0.5 × 10-3 sec is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×