Advertisements
Advertisements
प्रश्न
If log 4 = 0.6020, find the value of each of the following: log8
उत्तर
log8
log 4 = 0.6020
⇒ log 22 = 0.6020
⇒ 2 log 2 = 0.6020
⇒ log 2 = `(0.6020)/(2)`
= 0.3010.
APPEARS IN
संबंधित प्रश्न
If log 2 = 0.3010 and log 3 = 0.4771; find the value of : log 15
Prove that : (log a)2 - (log b)2 = log `(( a )/( b ))` . Log (ab)
If log10 a = b, find 103b - 2 in terms of a.
Given log x = 2m - n , log y = n - 2m and log z = 3m - 2n , find in terms of m and n, the value of log `(x^2y^3 ) /(z^4) `.
Express the following in terms of log 5 and/or log 2: log160
Write the logarithmic equation for:
E = `(1)/(2)"m v"^2`
Express the following as a single logarithm:
`(1)/(2)"log"25 - 2"log"3 + "log"36`
If log 16 = a, log 9 = b and log 5 = c, evaluate the following in terms of a, b, c: log 12
If log x = A + B and log y = A-B, express the value of `"log" x^2/(10y)` in terms of A and B.
Find the value of:
`("log"sqrt125 - "log"sqrt(27) - "log"sqrt(8))/("log"6 - "log"5)`