मराठी

If R = {(x, y) : x, y ∈ Z, x2 + y2 ≤ 4} is a relation on Z, then the domain of R is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If R = {(x, y) : x, y ∈ Z, x2 + y2 ≤ 4} is a relation on Z, then the domain of R is ______.

पर्याय

  • {0, 1, 2}

  • {0, −1, −2}

  • {−2, −1, 0, 1, 2}

  • {−1, 0, 1}

  • None of these

MCQ
रिकाम्या जागा भरा

उत्तर

If R = {(x, y) : x, y ∈ Z, x2 + y2 ≤ 4} is a relation on Z, then the domain of R is {−2, −1, 0, 1, 2}.

Explanation:

R = {(x, y) : x, y ∈ Z, x2 + y2 ≤ 4}

We know that,

\[\Rightarrow \left( - 2 \right)^2 + 0^2 \leq 4\]

\[ \Rightarrow \left( 2 \right)^2 + 0^2 \leq 4\]

\[ \Rightarrow \left( - 1 \right)^2 + 0^2 \leq 4\]

\[ \Rightarrow \left( 1 \right)^2 + 0^2 \leq 4\]

\[ \Rightarrow \left( - 1 \right)^2 + \left( 1 \right)^2 \leq 4\]

\[ \Rightarrow 0^2 + 0^2 \leq 4\]

\[ \Rightarrow \left( 1 \right)^2 + \left( 1 \right)^2 \leq 4\]

\[ \Rightarrow \left( - 1 \right)^2 + \left( - 1 \right)^2 \leq 4\]

Hence, domain (R) = {−2, −1, 0, 1, 2}.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Relations - Exercise 2.5 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 2 Relations
Exercise 2.5 | Q 5 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Let A = {1, 2, 3, …, 14}. Define a relation R from A to A by R = {(x, y): 3x – y = 0, where x, y ∈ A}. Write down its domain, codomain and range.


Write the relation R = {(x, x3): x is a prime number less than 10} in roster form.


If A = [1, 2, 3], B = [4, 5, 6], which of the following are relations from A to B? Give reasons in support of your answer.

(i) [(1, 6), (3, 4), (5, 2)]
(ii) [(1, 5), (2, 6), (3, 4), (3, 6)]
(iii) [(4, 2), (4, 3), (5, 1)]
(iv) A × B.


Find the inverse relation R−1 in each of the cases:

(iii) R is a relation from {11, 12, 13} to (8, 10, 12] defined by y = x − 3.

 

Let A = [1, 2] and B = [3, 4]. Find the total number of relation from A into B.

 

Define a relation R on the set N of natural number by R = {(xy) : y = x + 5, x is a natural number less than 4, xy ∈ N}. Depict this relationship using (i) roster form (ii) an arrow diagram. Write down the domain and range or R.


Let A = [1, 2, 3, 4, 5, 6]. Let R be a relation on A defined by {(ab) : ab ∈ A, b is exactly divisible by a}

(i) Writer R in roster form
(ii) Find the domain of R
(ii) Find the range of R. 


For the relation R1 defined on R by the rule (ab) ∈ R1 ⇔ 1 + ab > 0. Prove that: (ab) ∈ R1 and (b , c) ∈ R1 ⇒ (ac) ∈ R1 is not true for all abc ∈ R.


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:

(ii) (ab) R (cd) ⇒ (cd) R (ab) for all (ab), (cd) ∈ N × N

 

 


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N

(iii) (ab) R (cd) and (cd) R (ef) ⇒ (ab) R (ef) for all (ab), (cd), (ef) ∈ N × N

 

If n(A) = 3, n(B) = 4, then write n(A × A × B).

 

If R is a relation from set A = (11, 12, 13) to set B = (8, 10, 12) defined by y = x − 3, then write R−1.

 


Let R = [(xy) : xy ∈ Z, y = 2x − 4]. If (a, -2) and (4, b2) ∈ R, then write the values of a and b.


If A = [1, 3, 5] and B = [2, 4], list of elements of R, if
R = {(xy) : xy ∈ A × B and x > y}


Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, write A and B


Let A = [1, 2, 3, 5], B = [4, 6, 9] and R be a relation from A to B defined by R = {(xy) : x − yis odd}. Write R in roster form. 


R is a relation from [11, 12, 13] to [8, 10, 12] defined by y = x − 3. Then, R−1 is


Write the relation in the Roster Form. State its domain and range

R7 = {(a, b)/a, b ∈ N, a + b = 6}


Write the relation in the Roster Form. State its domain and range

R8 = {(a, b)/b = a + 2, a ∈ z, 0 < a < 5}


Select the correct answer from given alternative.

If (x, y) ∈ R × R, then xy = x2 is a relation which is


Answer the following:

Find R : A → A when A = {1, 2, 3, 4} such that R = {(a, b)/|a − b| ≥ 0}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is transitive


Answer the following:

Show that the following is an equivalence relation

R in A is set of all books. given by R = {(x, y)/x and y have same number of pages}


Answer the following:

Show that the following is an equivalence relation

R in A = {x ∈ Z | 0 ≤ x ≤ 12} given by R = {(a, b)/|a − b| is a multiple of 4}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R4 = {(7, –1), (0, 3), (3, 3), (0, 7)}


Let A = {1, 2, 3, 4, …, 45} and R be the relation defined as “is square of ” on A. Write R as a subset of A × A. Also, find the domain and range of R


Let A = {9, 10, 11, 12, 13, 14, 15, 16, 17} and let f : A → N be defined by f(n) = the highest prime factor of n ∈ A. Write f as a set of ordered pairs and find the range of f


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is symmetric


Choose the correct alternative:

The rule f(x) = x2 is a bijection if the domain and the co-domain are given by


If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.


If R3 = {(x, x) | x is a real number} is a relation. Then find domain and range of R3.


Is the given relation a function? Give reasons for your answer.

f = {(x, x) | x is a real number}


If R = {(x, y): x, y ∈ Z, x2 + 3y2 ≤ 8} is a relation on the set of integers Z, then the domain of R–1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×