Advertisements
Advertisements
प्रश्न
For the relation R1 defined on R by the rule (a, b) ∈ R1 ⇔ 1 + ab > 0. Prove that: (a, b) ∈ R1 and (b , c) ∈ R1 ⇒ (a, c) ∈ R1 is not true for all a, b, c ∈ R.
उत्तर
We have:
(a, b) ∈ R1 ⇔ 1 + ab > 0
Let:
a = 1, b = \[- \frac{1}{2}\]and c = -4
Now,
\[\left( 1, - \frac{1}{2} \right) \in R_1 \text{ and } \left( - \frac{1}{2}, - 4 \right) \in R_1 \] , as
(a, b) ∈ R1 and (b , c) ∈ R1
Thus, (a, c) ∈ R1 is not true for all a, b, c ∈ R.
APPEARS IN
संबंधित प्रश्न
Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B.
Determine the domain and range of the relations:
(ii) \[S = \left\{ \left( a, b \right) : b = \left| a - 1 \right|, a \in Z \text{ and} \left| a \right| \leq 3 \right\}\]
Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?
(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R
Justify your answer in case.
If R = {(x, y) : x, y ∈ Z, x2 + y2 ≤ 4} is a relation defined on the set Z of integers, then write domain of R.
Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, write A and B
If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, then (A − B) × (B − C) is
Let A = [1, 2, 3], B = [1, 3, 5]. If relation R from A to B is given by = {(1, 3), (2, 5), (3, 3)}, Then R−1 is
Let R be a relation on N defined by x + 2y = 8. The domain of R is
Let R be a relation from a set A to a set B, then
Write the relation in the Roster Form. State its domain and range
R1 = {(a, a2)/a is prime number less than 15}
Write the relation in the Roster Form. State its domain and range
R2 = `{("a", 1/"a") // 0 < "a" ≤ 5, "a" ∈ "N"}`
Write the relation in the Roster Form. State its domain and range
R5 = {(x, y)/x + y = 3, x, y∈ {0, 1, 2, 3}
Write the relation in the Roster Form. State its domain and range
R6 = {(a, b)/a ∈ N, a < 6 and b = 4}
Select the correct answer from given alternative.
A relation between A and B is
Select the correct answer from given alternative.
If (x, y) ∈ R × R, then xy = x2 is a relation which is
Select the correct answer from given alternative
If A = {a, b, c} The total no. of distinct relations in A × A is
Answer the following:
If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range
R1 = {(1, 4), (1, 5), (1, 6)}
Answer the following:
Determine the domain and range of the following relation.
R = {(a, b)/a ∈ N, a < 5, b = 4}
Answer the following:
Show that the following is an equivalence relation
R in A = {x ∈ Z | 0 ≤ x ≤ 12} given by R = {(a, b)/|a − b| is a multiple of 4}
Answer the following:
Show that the following is an equivalence relation
R in A = {x ∈ N/x ≤ 10} given by R = {(a, b)/a = b}
Multiple Choice Question :
If there are 1024 relation from a set A = {1, 2, 3, 4, 5} to a set B, then the number of elements in B is
Discuss the following relation for reflexivity, symmetricity and transitivity:
The relation R defined on the set of all positive integers by “mRn if m divides n”
Discuss the following relation for reflexivity, symmetricity and transitivity:
Let A be the set consisting of all the members of a family. The relation R defined by “aRb if a is not a sister of b”
Discuss the following relation for reflexivity, symmetricity and transitivity:
Let A be the set consisting of all the female members of a family. The relation R defined by “aRb if a is not a sister of b”
Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive
Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence
Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive
Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar to b. Prove that R is an equivalence relation
On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is reflexive
In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation
Choose the correct alternative:
Let R be the universal relation on a set X with more than one element. Then R is
Choose the correct alternative:
Let X = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3), (2, 1), (3, 1), (1, 4), (4, 1)}. Then R is
Find the domain and range of the relation R given by R = {(x, y) : y = `x + 6/x`; where x, y ∈ N and x < 6}.
Is the given relation a function? Give reasons for your answer.
f = {(x, x) | x is a real number}
If R = {(x, y): x, y ∈ Z, x2 + 3y2 ≤ 8} is a relation on the set of integers Z, then the domain of R–1 is ______.