मराठी

If the Radius of the Base of a Right Circular Cylinder is Halved, Keeping the Height the Same, Then the Ratio of the Volume of the Cylinder Thus Obtained to the Volume of Original Cylinder Is: - Mathematics

Advertisements
Advertisements

प्रश्न

If the radius of the base of a right circular cylinder is halved, keeping the height the same, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is:

पर्याय

  •  1 : 2

  •  2 : 1

  •  1 : 4

  •  4 : 1

MCQ

उत्तर

Let the radius and height of the original cylinder be r and h respectively.

∴Volume of the original cylinder = πr2h

According to the question, radius of the new cylinder is halved keeping the height same.

⇒ Radius of the new cylinder`=r/2`

Also, height of the new cylinder = h

∴ Volume of the new cylinder `pi(r/2)^2h=(pir^2h)/4`

`\text{Volume of the new cylinder}/\text{Volume of  original cylinder}=(((pir^2h)/4))/(r^2h4)=underline1=1:4`

Hence, the correct answer is C.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Surface Areas and Volumes - Exercise 14.5 [पृष्ठ ९१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 14 Surface Areas and Volumes
Exercise 14.5 | Q 41 | पृष्ठ ९१

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×