मराठी

If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord. - Mathematics

Advertisements
Advertisements

प्रश्न

If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

बेरीज

उत्तर

Let PQ and RS be two equal chords of a given circle and they are intersecting each other at point T.

Draw perpendiculars OV and OU on these chords.

In ΔOVT and ΔOUT,

OV = OU     ...(Equal chords of a circle are equidistant from the centre)

∠OVT = ∠OUT  ...(Each 90°)

OT = OT   ...(Common)

∴ ΔOVT ≅ ΔOUT    ...(RHS congruence rule)

∴ VT = UT       ...(By CPCT)   ...(1)

It is given that,

PQ = RS             ...(2)

⇒ `1/2PQ` = `1/2RS`

⇒ PV = RU       ...(3)

On adding equations (1) and (3), we obtain

PV + VT = RU + UT

⇒ PT = RT       ...(4)

By subtracting equation (4) from equation (2), we obtain

PQ − PT = RS − RT

⇒ QT = ST        ...(5)

Equations (4) and (5) indicate that the corresponding segments of chords PQ and RS are congruent to each other.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Circles - Exercise 10.4 [पृष्ठ १७९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
पाठ 10 Circles
Exercise 10.4 | Q 2 | पृष्ठ १७९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×