मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

In the Arrangement Shown in Figure (15-e6), the String Has a Mass of 4⋅5 G. How Much Time Will It Take for a - Physics

Advertisements
Advertisements

प्रश्न

In the arrangement shown in figure  , the string has a mass of 4⋅5 g. How much time will it take for a transverse disturbance produced at the floor to reach the pulley? Take g = 10 m s−2.

बेरीज

उत्तर

Given,
Mass of the block = 2 kg
Total length of the string = 2 + 0.25 = 2.25 m
Mass per unit length of the string:

\[m = \frac{4 . 5 \times {10}^{- 3}}{2 . 25}\] 

\[       = 2 \times  {10}^{- 3}   kg/m\] 

\[T = 2g = 20  N\] 

\[\text{ Wave  speed,}  \nu = \sqrt{\left( \frac{T}{m} \right)}\] 

\[ = \sqrt{\frac{20}{\left( 2 \times {10}^{- 3} \right)}}\] 

\[  =   \sqrt{{10}^4}  \] 

\[   =    {10}^2   m/s = 100  \text{ m/s }\]

Time taken by the disturbance to reach the pulley: 

\[t = \left( \frac{s}{\nu} \right)\] 

\[   = \frac{2}{100} = 0 . 02  s\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Wave Motion and Waves on a String - Exercise [पृष्ठ ३२५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 15 Wave Motion and Waves on a String
Exercise | Q 22 | पृष्ठ ३२५

संबंधित प्रश्‍न

Explain why (or how) Solids can support both longitudinal and transverse waves, but only longitudinal waves can propagate in gases


Explain the reflection of transverse and longitudinal waves from a denser medium and a rared medium.


You are walking along a seashore and a mild wind is blowing. Is the motion of air a wave motion?


A mechanical wave propagates in a medium along the X-axis. The particles of the medium
(a) must move on the X-axis
(b) must move on the Y-axis
(c) may move on the X-axis
(d) may move on the Y-axis.


A transverse wave travels along the Z-axis. The particles of the medium must move


Longitudinal waves cannot


Mark out the correct options.


A steel wire of length 64 cm weighs 5 g. If it is stretched by a force of 8 N, what would be the speed of a transverse wave passing on it?


A transverse wave described by \[y = \left( 0 \cdot 02  m \right)  \sin  \left( 1 \cdot 0  m^{- 1} \right)  x + \left( 30  s^{- 1} \right)t\] propagates on a stretched string having a linear mass density of \[1 \cdot 2 \times  {10}^{- 4}   kg   m^{- 1}\] the tension in the string.


A circular loop of string rotates about its axis on a frictionless horizontal place at a uniform rate so that the tangential speed of any particle of the string is ν.  If a small transverse disturbance is produced at a point of the loop, with what speed (relative to the string) will this disturbance travel on the string?


A transverse wave of amplitude 0⋅50 mm and frequency 100 Hz is produced on a wire stretched to a tension of 100 N. If the wave speed is 100 m s−1, what average power is the source transmitting to the wire?


A tuning fork of frequency 440 Hz is attached to a long string of linear mass density 0⋅01 kg m−1 kept under a tension of 49 N. The fork produces transverse waves of amplitude 0⋅50 mm on the string. (a) Find the wave speed and the wavelength of the waves. (b) Find the maximum speed and acceleration of a particle of the string. (c) At what average rate is the tuning fork transmitting energy to the string?


If the speed of a transverse wave on a stretched string of length 1 m is 60 m−1, what is the fundamental frequency of vibration?


A steel wire of mass 4⋅0 g and length 80 cm is fixed at the two ends. The tension in the wire is 50 N. Find the frequency and wavelength of the fourth harmonic of the fundamental.


Three resonant frequencies of a string are 90, 150 and 210 Hz. (a) Find the highest possible fundamental frequency of vibration of this string. (b) Which harmonics of the fundamental are the given frequencies? (c) Which overtones are these frequencies? (d) If the length of the string is 80 cm, what would be the speed of a transverse wave on this string?


The equation of a standing wave, produced on a string fixed at both ends, is
\[y = \left( 0 \cdot 4  cm \right)  \sin  \left[ \left( 0 \cdot 314  {cm}^{- 1} \right)  x \right]  \cos  \left[ \left( 600\pi  s^{- 1} \right)  t \right]\]
What could be the smallest length of the string?


The phenomenon of beats can take place


Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:

y = 3 sin (5x – 0.5t) + 4 cos (5x – 0.5t)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×