मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

The Equation of a Standing Wave, Produced on a String Fixed at Both Ends, is - Physics

Advertisements
Advertisements

प्रश्न

The equation of a standing wave, produced on a string fixed at both ends, is
\[y = \left( 0 \cdot 4  cm \right)  \sin  \left[ \left( 0 \cdot 314  {cm}^{- 1} \right)  x \right]  \cos  \left[ \left( 600\pi  s^{- 1} \right)  t \right]\]
What could be the smallest length of the string?

बेरीज

उत्तर

Given:
Equation of the standing wave:

\[y = \left( 0 . 4  cm \right)  \sin  \left[ \left( 0 . 314  {cm}^{- 1} \right)  x \right]\cos  \left[ \left( 600  \pi s^{- 1} \right)  t \right]\] 

\[ \Rightarrow k = 0 . 314 = \frac{\pi}{10}\] 

\[Also,   k = \frac{2\pi}{\lambda}\] 

\[ \Rightarrow \lambda = 20  \text{ cm }\]
We know:
\[L = \frac{n\lambda}{2}\]
For the smallest length, putting n = 1:
\[\Rightarrow L = \frac{\lambda}{2} = \frac{20  \text{ cm}}{2} = 10  \text{ cm }\]
Therefore, the required length of the string is 10 cm.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Wave Motion and Waves on a String - Exercise [पृष्ठ ३२७]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 15 Wave Motion and Waves on a String
Exercise | Q 53 | पृष्ठ ३२७

संबंधित प्रश्‍न

When a transverse wave on a string is reflected from the free end, the phase change produced is ..............

(a) zero rad

(b) ` pi/2 ` rad

(c) `(3pi)/4` rad

(d) `pi`  rad


A string of mass 2.50 kg is under a tension of 200 N. The length of the stretched string is 20.0 m. If the transverse jerk is struck at one end of the string, how long does the disturbance take to reach the other end?


Explain the reflection of transverse and longitudinal waves from a denser medium and a rared medium.


You are walking along a seashore and a mild wind is blowing. Is the motion of air a wave motion?


A mechanical wave propagates in a medium along the X-axis. The particles of the medium
(a) must move on the X-axis
(b) must move on the Y-axis
(c) may move on the X-axis
(d) may move on the Y-axis.


A transverse wave travels along the Z-axis. The particles of the medium must move


A wave moving in a gas


A particle on a stretched string supporting a travelling wave, takes 5⋅0 ms to move from its mean position to the extreme position. The distance between two consecutive particles, which are at their mean positions, is 2⋅0 cm. Find the frequency, the wavelength and the wave speed.


Figure shows a plot of the transverse displacements of the particles of a string at t = 0 through which a travelling wave is passing in the positive x-direction. The wave speed is 20 cm s−1. Find (a) the amplitude, (b) the wavelength, (c) the wave number and (d) the frequency of the wave.


A steel wire of length 64 cm weighs 5 g. If it is stretched by a force of 8 N, what would be the speed of a transverse wave passing on it?


A vertical rod is hit at one end. What kind of wave propagates in the rod if (a) the hit is made vertically (b) the hit is made horizontally?


Two wires of different densities but same area of cross section are soldered together at one end and are stretched to a tension T. The velocity of a transverse wave in the first wire is double of that in the second wire. Find the ratio of the density of the first wire to that of the second wire.


Consider the following statements about sound passing through a gas.
(A) The pressure of the gas at a point oscillates in time.
(B) The position of a small layer of the gas oscillates in time.


A transverse wave described by \[y = \left( 0 \cdot 02  m \right)  \sin  \left( 1 \cdot 0  m^{- 1} \right)  x + \left( 30  s^{- 1} \right)t\] propagates on a stretched string having a linear mass density of \[1 \cdot 2 \times  {10}^{- 4}   kg   m^{- 1}\] the tension in the string.


A heavy but uniform rope of length L is suspended from a ceiling. (a) Write the velocity of a transverse wave travelling on the string as a function of the distance from the lower end. (b) If the rope is given a sudden sideways jerk at the bottom, how long will it take for the pulse to reach the ceiling? (c) A particle is dropped from the ceiling at the instant the bottom end is given the jerk. Where will the particle meet the pulse?


A tuning fork of frequency 440 Hz is attached to a long string of linear mass density 0⋅01 kg m−1 kept under a tension of 49 N. The fork produces transverse waves of amplitude 0⋅50 mm on the string. (a) Find the wave speed and the wavelength of the waves. (b) Find the maximum speed and acceleration of a particle of the string. (c) At what average rate is the tuning fork transmitting energy to the string?


A steel wire of mass 4⋅0 g and length 80 cm is fixed at the two ends. The tension in the wire is 50 N. Find the frequency and wavelength of the fourth harmonic of the fundamental.


Three resonant frequencies of a string are 90, 150 and 210 Hz. (a) Find the highest possible fundamental frequency of vibration of this string. (b) Which harmonics of the fundamental are the given frequencies? (c) Which overtones are these frequencies? (d) If the length of the string is 80 cm, what would be the speed of a transverse wave on this string?


The phenomenon of beats can take place


Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:

y = 3 sin (5x – 0.5t) + 4 cos (5x – 0.5t)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×