मराठी

In the Following Figure, ∠Abc = 90° and Bd ⊥ Ac. If Bd = 8 Cm and Ad = 4 Cm, Find Cd. - Mathematics

Advertisements
Advertisements

प्रश्न

In the following Figure, ∠ABC = 90° and BD ⊥ AC. If BD = 8 cm and AD = 4 cm, find CD.

उत्तर

We have, ∠ABC = 90° and BD ⊥ AC

Now, ∠ABD + ∠DBC − 90°          …(i) [∵ ∠ABC − 90°]

And, ∠C + ∠DBC − 90°        …(ii) [By angle sum prop. in ΔBCD]

Compare equations (i) & (ii)

∠ABD = ∠C                         …(iii)

In ΔABD and ΔBCD

∠ABD = ∠C                     [From (iii)]

∠ADB = ∠BDC                 [Each 90°]

Then, ΔABD ~ ΔBCD        [By AA similarity]

`therefore"BD"/"CD"="AD"/"BD"`         [Corresponding parts of similar Δ are proportional]

`rArr8/"CD"=4/8`

`rArr"CD"=(8xx8)/4=16` cm

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Triangles - Exercise 7.5 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 7 Triangles
Exercise 7.5 | Q 5 | पृष्ठ ७४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

In the following figure, altitudes AD and CE of ΔABC intersect each other at the point P. Show that:

ΔABD ∼ ΔCBE


A vertical stick 10 cm long casts a shadow 8 cm long. At the same time a shadow 30 m long. Determine the height of the tower.


In the following Figure, DE || BC such that AE = (1/4) AC. If AB = 6 cm, find AD.


Two triangles DEF an GHK are such that ∠D = 48° and ∠H = 57° . If ΔDEF ∼GHK then find the measures of ∠F   


In figure, if DE || BC, find the ratio of ar(ADE) and ar(DECB).


It is given that ΔABC ~ ΔDFE, ∠A =30°, ∠C = 50°, AB = 5 cm, AC = 8 cm and DF = 7.5 cm. Then, the following is true ______.


□ABCD is a parallelogram. Point P is the midpoint of side CD. seg BP intersects diagonal AC at point X, then prove that: 3AX = 2AC


In the given figure, ΔPQR is a right-angled triangle with ∠PQR = 90°. QS is perpendicular to PR. Prove that pq = rx.


In the given figure, ΔLMN is similar to ΔPQR. To find the measure of ∠N, complete the following activity.


Given: ΔLMN ∼ ΔPQR

Since ΔLMN ∼ ΔPQR, therefore, corresponding angles are equal.

So, ∠L ≅ `square`

⇒ ∠L = `square`

We know, the sum of angles of a triangle = `square`

∴ ∠L + ∠M + ∠N = `square`

Substituting the values of ∠L and ∠M in equation (i),

`square` + `square` + ∠N = `square`

∠N + `square` = `square`

∠N = `square` – `square`

∠N = `square`

 Hence, the measure of ∠N is `square`.


If ΔABC ∼ ΔDEF such that ∠A = 92° and ∠B = 40°, then ∠F = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×