मराठी

In the following figure, ABCD is parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersect DC at P, show that - Mathematics

Advertisements
Advertisements

प्रश्न

In the following figure, ABCD is parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersect DC at P, show that

ar (BPC) = ar (DPQ).

[Hint: Join AC.]

उत्तर

It is given that ABCD is a parallelogram.

AD || BC and AB || DC(Opposite sides of a parallelogram are parallel to each other)

Join point A to point C.

Consider ΔAPC and ΔBPC

ΔAPC and ΔBPC are lying on the same base PC and between the same parallels PC and AB. Therefore,

Area (ΔAPC) = Area (ΔBPC) ... (1)

In quadrilateral ACDQ, it is given that

AD = CQ

Since ABCD is a parallelogram,

AD || BC (Opposite sides of a parallelogram are parallel)

CQ is a line segment which is obtained when line segment BC is produced.

∴ AD || CQ

We have,

AC = DQ and AC || DQ

Hence, ACQD is a parallelogram.

Consider ΔDCQ and ΔACQ

These are on the same base CQ and between the same parallels CQ and AD. Therefore,

Area (ΔDCQ) = Area (ΔACQ)

⇒ Area (ΔDCQ) − Area (ΔPQC) = Area (ΔACQ) − Area (ΔPQC)

⇒ Area (ΔDPQ) = Area (ΔAPC) ... (2)

From equations (1) and (2), we obtain

Area (ΔBPC) = Area (ΔDPQ)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Areas of Parallelograms and Triangles - Exercise 9.4 [पृष्ठ १६५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
पाठ 9 Areas of Parallelograms and Triangles
Exercise 9.4 | Q 4 | पृष्ठ १६५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If E, F, G and H are respectively the mid-points of the sides of a parallelogram ABCD show that ar (EFGH) = 1/2ar (ABCD)

 


In the given figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that

(i) ar (PQRS) = ar (ABRS)

(ii) ar (AXS) = 1/2ar (PQRS)


In the following figure, ABCD, DCFE and ABFE are parallelograms. Show that ar (ADE) = ar (BCF).


In the given below fig. ABCD, ABFE and CDEF are parallelograms. Prove that ar (ΔADE)
= ar (ΔBCF)


ABCD is a trapezium with parallel sides AB = a cm and DC = b cm (Figure). E and F are the mid-points of the non-parallel sides. The ratio of ar (ABFE) and ar (EFCD) is ______.


PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm. A is any point on PQ. If PS = 5 cm, then ar (PAS) = 30 cm2.


ABCD is a square. E and F are respectively the mid-points of BC and CD. If R is the mid-point of EF (Figure), prove that ar (AER) = ar (AFR)


ABCD is a parallelogram in which BC is produced to E such that CE = BC (Figure). AE intersects CD at F. If ar (DFB) = 3 cm2, find the area of the parallelogram ABCD.


In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q (Figure). Prove that ar (ABCD) = ar (APQD)


If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram so formed will be half of the area of the given quadrilateral (Figure).

[Hint: Join BD and draw perpendicular from A on BD.]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×