मराठी

In the given figure, ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If ∠DBC = 55° and ∠BAC = 45°, find ∠BCD. - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If ∠DBC = 55° and ∠BAC = 45°, find ∠BCD.

टीपा लिहा

उत्तर

It is given that ABCD  is a cyclic quadrilateral with AC  and DB  as its diagonals.

We have to find  `angleBCD`

Since angles in the same segment of a circle are equal

So  `angleCAD = angle DBC = 55°`

`angleDAB = angleCAD + angle BAC `

             = 55° +  45 °

             = 100°

Since  `angleDAB + angle BCD = 180°` (Opposite angle of cyclic quadrilateral)

`angleBCD `  = 180° - 100°

              = 80° 

Hence  `angle BCD = 80°`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Circles - Exercise 15.5 [पृष्ठ १०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 15 Circles
Exercise 15.5 | Q 23 | पृष्ठ १०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In any triangle ABC, if the angle bisector of ∠A and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle ABC.


Two chords AB and CD of lengths 5 cm 11cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6 cm, find the radius of the circle.


The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?


In the figure, `square`ABCD is a cyclic quadrilateral. Seg AB is a diameter. If ∠ ADC = 120˚, complete the following activity to find measure of ∠ BAC.

`square` ABCD is a cyclic quadrilateral.
∴ ∠ ADC + ∠ ABC = 180°
∴ 120˚ + ∠ ABC = 180°
∴ ∠ ABC = ______
But ∠ ACB = ______  .......(angle in semicircle)

In Δ ABC,
∠ BAC + ∠ ACB + ∠ ABC = 180°
∴ ∠BAC + ______ = 180°
∴ ∠ BAC = ______


Circles are described on the sides of a triangle as diameters. Prove that the circles on any two sides intersect each other on the third side (or third side produced).


Prove that the perpendicular bisectors of the sides of a cyclic quadrilateral are concurrent.


In the given figure, ABCD is a quadrilateral inscribed in a circle with centre O. CD is produced to E such that ∠AED = 95° and ∠OBA = 30°. Find ∠OAC.


In the given figure, O is the centre of the circle such that ∠AOC = 130°, then ∠ABC =


ABCD is a cyclic quadrilateral such that ∠A = 90°, ∠B = 70°, ∠C = 95° and ∠D = 105°.


In the following figure, AOB is a diameter of the circle and C, D, E are any three points on the semi-circle. Find the value of ∠ACD + ∠BED.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×