मराठी

In the given figure, ar (DRC) = ar (DPC) and ar (BDP) = ar (ARC). Show that both the quadrilaterals ABCD and DCPR are trapeziums. - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, ar (DRC) = ar (DPC) and ar (BDP) = ar (ARC). Show that both the quadrilaterals ABCD and DCPR are trapeziums.

उत्तर

It is given that

Area (ΔDRC) = Area (ΔDPC)

As ΔDRC and ΔDPC lie on the same base DC and have equal areas, therefore, they must lie between the same parallel lines.

∴ DC || RP

Therefore, DCPR is a trapezium.

It is also given that

Area (ΔBDP) = Area (ΔARC)

⇒ Area (BDP) − Area (ΔDPC) = Area (ΔARC) − Area (ΔDRC)

⇒ Area (ΔBDC) = Area (ΔADC)

Since ΔBDC and ΔADC are on the same base CD and have equal areas, they must lie between the same parallel lines.

∴ AB || CD

Therefore, ABCD is a trapezium.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Areas of Parallelograms and Triangles - Exercise 9.3 [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
पाठ 9 Areas of Parallelograms and Triangles
Exercise 9.3 | Q 16 | पृष्ठ १६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×