मराठी

In a δAbc, P and Q Are Respectively the Mid-points of Ab and Bc and R is the Mid-point of Ap. Prove that : (1) Ar (δ Pbq) = Ar (δ Arc) (2) Ar (δ Prq) =`1/2`Ar (δ Arc) (3 - Mathematics

Advertisements
Advertisements

प्रश्न

In a ΔABC, P and Q are respectively the mid-points of AB and BC and R is the mid-point
of AP. Prove that :

(1) ar (Δ PBQ) = ar (Δ ARC)

(2) ar (Δ PRQ) =`1/2`ar (Δ ARC)

(3) ar (Δ RQC) =`3/8` ar (Δ ABC) .

उत्तर

(1)   We know that each median of a Δle  divides it into two triangles of equal area
        Since, OR is a median of  ΔCAP

       ∴ ar (ΔCRA) = `1/2` ar (ΔCAP)       ....... (1) 

        Also, CPis a median of ΔCAB

       ∴ ar  ( ΔCAP) ar  (ΔCPB)            ....... (2) 
        From (1) and (2) we get

       ∴ area (Δ ARC ) = `1/2 ar (CPB)` ....... (3)

         PQ is the median of  ΔPBC

        ∴ area( Δ CPB) =  2area (Δ PBQ)    ......... (4)

     From (3) and (4) we get

   ∴ area (Δ ARC) = area (PBQ)    .......  (5)

(2)     Since QP and QR medians of s QAB and QAP                respectively.

       ∴ ar (ΔQAP) = area (ΔPBQ)      ............ (6)

        And area  (ΔQAP)  =  2ar (QRP)  ......... (7)

        From (6) and (7) we have

        Area (ΔPRQ) = `1/2` ar (ΔPBQ)    ......... (8)

         From (5)  and (8)  we get 

        Area (ΔPRQ) = `1/2` area (ΔARC)

(3)   Since, ∠R is a median of  ΔCAP

       ∴ area (ΔARC) = `1/2` ar (ΔCAP) 

        `= 1/2 xx1/2[ ar (ABC)]` 

         = `1/4` area (ABC)

Since RQ is a median of  ΔRBC

        ∴ ar (ΔRQC) =`1/2` ar (Δ RBC)

         = `1/2`[ ar (ΔABC)- ar (ARC) ]

         = `1/2`[ar (ΔABC) - `1/4`(Δ ABC )]

          = `3/8`(Δ ABC)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Areas of Parallelograms and Triangles - Exercise 14.3 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 14 Areas of Parallelograms and Triangles
Exercise 14.3 | Q 19 | पृष्ठ ४६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed (see the following figure). Show that

ar (ABCD) = ar (PBQR).

[Hint: Join AC and PQ. Now compare area (ACQ) and area (APQ)]


Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar (AOD) = ar (BOC). Prove that ABCD is a trapezium.


In Fig. below, ABC and BDE are two equilateral triangles such that D is the mid-point of
BC. AE intersects BC in F. Prove that

(1)  ar (Δ BDE) = `1/2` ar (ΔABC) 

(2) Area ( ΔBDE) `= 1/2 ` ar (ΔBAE)

(3)  ar (BEF) = ar (ΔAFD)

(4) area (Δ ABC) = 2 area (ΔBEC)

(5) ar (ΔFED) `= 1/8` ar (ΔAFC) 

(6) ar (Δ BFE) = 2 ar (ΔEFD)


In the below fig. D and E are two points on BC such that BD = DE = EC. Show that ar
(ΔABD) = ar (ΔADE) = ar (ΔAEC).


If a triangle and a parallelogram are on the same base and between same parallels, then the ratio of the area of the triangle to the area of parallelogram is ______.


In the following figure, ABCD and EFGD are two parallelograms and G is the mid-point of CD. Then ar (DPC) = `1/2` ar (EFGD).


The area of the parallelogram ABCD is 90 cm2 (see figure). Find

  1. ar (ΔABEF)
  2. ar (ΔABD)
  3. ar (ΔBEF)


In ∆ABC, D is the mid-point of AB and P is any point on BC. If CQ || PD meets AB in Q (Figure), then prove that ar (BPQ) = `1/2` ar (∆ABC).


O is any point on the diagonal PR of a parallelogram PQRS (Figure). Prove that ar (PSO) = ar (PQO).


If the medians of a ∆ABC intersect at G, show that ar (AGB) = ar (AGC) = ar (BGC) = `1/3` ar (ABC)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×