मराठी

If the medians of a ∆ABC intersect at G, show that ar (AGB) = ar (AGC) = ar (BGC) = 13 ar (ABC) - Mathematics

Advertisements
Advertisements

प्रश्न

If the medians of a ∆ABC intersect at G, show that ar (AGB) = ar (AGC) = ar (BGC) = `1/3` ar (ABC)

बेरीज

उत्तर

Given: In ΔABC, AD, BE and CF are medians and intersect at G.

To prove: ar (ΔAGB) = ar (ΔAGC) = ar (ΔBGC) = `1/3` ar (ΔABC)

Proof: We know that, a median of a triangle divides it into two triangles of equal area.

In ΔABC, AD is a median

∴ ar (ΔABD) = ar (ΔACD)  ...(i)

In ΔBGC, GD is a median

∴ ar (ΔGBD) = ar (ΔGCD)  ...(ii)

On subtracting equation (ii) from equation (i), we get

ar (ΔABD) – ar (ΔGBD) = ar (ΔACD) – ar (ΔGCD)

⇒ ar (ΔAGB) = ar (ΔAGC)  ...(iii)

Similarly, ar (ΔAGB) = ar (ΔBGC) ...(iv)

From equations (iii) and (iv),

ar (ΔAGB) = ar (ΔBGC) = ar (ΔAGC)  ...(v)

Now, ar (ΔABC) = ar (ΔAGB) + ar (ΔBGC) + ar (ΔAGC)

⇒ ar (ΔABC) = ar (ΔAGB) + ar (ΔAGB) + ar (ΔAGB)  ...[From equation (v)]

⇒ ar (ΔABC) = 3 ar (ΔAGB)

⇒ ar (ΔAGB) = `1/3` ar (ΔABC)  ...(vi)

From eqattions (v) and (vi),

ar (ΔBGC) = `1/3` ar (ΔABC)

And ar (ΔAGC) = `1/3` ar (ΔABC)

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Areas of Parallelograms & Triangles - Exercise 9.4 [पृष्ठ ९६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
पाठ 9 Areas of Parallelograms & Triangles
Exercise 9.4 | Q 8. | पृष्ठ ९६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In the given figure, ABC and ABD are two triangles on the same base AB. If line-segment CD is bisected by AB at O, show that ar (ABC) = ar (ABD).


In the given figure, diagonals AC and BD of quadrilateral ABCD intersect at O such that OB = OD. If AB = CD, then show that:

(i) ar (DOC) = ar (AOB)

(ii) ar (DCB) = ar (ACB)

(iii) DA || CB or ABCD is a parallelogram.

[Hint: From D and B, draw perpendiculars to AC.]


The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed (see the following figure). Show that

ar (ABCD) = ar (PBQR).

[Hint: Join AC and PQ. Now compare area (ACQ) and area (APQ)]


In a ΔABC, P and Q are respectively the mid-points of AB and BC and R is the mid-point
of AP. Prove that :

(1) ar (Δ PBQ) = ar (Δ ARC)

(2) ar (Δ PRQ) =`1/2`ar (Δ ARC)

(3) ar (Δ RQC) =`3/8` ar (Δ ABC) .


PQRS is a parallelogram whose area is 180 cm2 and A is any point on the diagonal QS. The area of ∆ASR = 90 cm2.


ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Then ar (BDE) = `1/4` ar (ABC).


The area of the parallelogram ABCD is 90 cm2 (see figure). Find ar (ΔBEF)


O is any point on the diagonal PR of a parallelogram PQRS (Figure). Prove that ar (PSO) = ar (PQO).


In ∆ABC, if L and M are the points on AB and AC, respectively such that LM || BC. Prove that ar (LOB) = ar (MOC)


In the following figure, X and Y are the mid-points of AC and AB respectively, QP || BC and CYQ and BXP are straight lines. Prove that ar (ABP) = ar (ACQ).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×