मराठी

ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Then ar (BDE) = 14 ar (ABC). - Mathematics

Advertisements
Advertisements

प्रश्न

ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Then ar (BDE) = `1/4` ar (ABC).

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is True.

Explanation:

Given: ΔABC and ΔBDE are two equilateral triangles.

Suppose that each sides of triangle ABC be x.

Similarly, D is the mid-point of BC.

So, each side of triangle BDE is `x/2`.

Now, `(Area(ΔBDE))/(Area(ΔABC)) = (sqrt(3)/4 xx (x/2)^2)/(sqrt(3) / 4 xx x^2)`

= `x^2/(4x^2)`

= `1/4`

Therefore, area (ΔBDE) = `1/4` area (ΔABC).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Areas of Parallelograms & Triangles - Exercise 9.2 [पृष्ठ ८८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
पाठ 9 Areas of Parallelograms & Triangles
Exercise 9.2 | Q 4. | पृष्ठ ८८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×