मराठी

In a triangle ABC, E is the mid-point of median AD. Show that ar (BED) = 1/4ar (ABC). - Mathematics

Advertisements
Advertisements

प्रश्न

In a triangle ABC, E is the mid-point of median AD. Show that ar (BED) = 1/4ar (ABC).

उत्तर

AD is the median of ΔABC. Therefore, it will divide ΔABC into two triangles of equal areas.

∴ Area (ΔABD) = Area (ΔACD)

⇒ Area (ΔABD) = 1/2Area (ΔABC)... (1)

In ΔABD, E is the mid-point of AD. Therefore, BE is the median.

∴ Area (ΔBED) = Area (ΔABE)

⇒ Area (ΔBED) = 1/2Area (ΔABD)

⇒ Area (ΔBED) = 1/2*1/2Area (ΔABC) [From equation (1)]

⇒ Area (ΔBED) = 1/4Area (ΔABC)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Areas of Parallelograms and Triangles - Exercise 9.3 [पृष्ठ १६२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
पाठ 9 Areas of Parallelograms and Triangles
Exercise 9.3 | Q 2 | पृष्ठ १६२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In the given figure, diagonals AC and BD of quadrilateral ABCD intersect at O such that OB = OD. If AB = CD, then show that:

(i) ar (DOC) = ar (AOB)

(ii) ar (DCB) = ar (ACB)

(iii) DA || CB or ABCD is a parallelogram.

[Hint: From D and B, draw perpendiculars to AC.]


In the given figure, ar (DRC) = ar (DPC) and ar (BDP) = ar (ARC). Show that both the quadrilaterals ABCD and DCPR are trapeziums.


In the following figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that

(i) ar (BDE) = 1/4 ar (ABC)

(ii) ar (BDE) = 1/2 ar (BAE)

(iii) ar (ABC) = 2 ar (BEC)

(iv) ar (BFE) = ar (AFD)

(v) ar (BFE) = 2 ar (FED)

(vi) ar (FED) = 1/8 ar (AFC)

[Hint : Join EC and AD. Show that BE || AC and DE || AB, etc.]


In Fig. below, ABC and BDE are two equilateral triangles such that D is the mid-point of
BC. AE intersects BC in F. Prove that

(1)  ar (Δ BDE) = `1/2` ar (ΔABC) 

(2) Area ( ΔBDE) `= 1/2 ` ar (ΔBAE)

(3)  ar (BEF) = ar (ΔAFD)

(4) area (Δ ABC) = 2 area (ΔBEC)

(5) ar (ΔFED) `= 1/8` ar (ΔAFC) 

(6) ar (Δ BFE) = 2 ar (ΔEFD)


In the below fig. D and E are two points on BC such that BD = DE = EC. Show that ar
(ΔABD) = ar (ΔADE) = ar (ΔAEC).


If a triangle and a parallelogram are on the same base and between same parallels, then the ratio of the area of the triangle to the area of parallelogram is ______.


PQRS is a parallelogram whose area is 180 cm2 and A is any point on the diagonal QS. The area of ∆ASR = 90 cm2.


The area of the parallelogram ABCD is 90 cm2 (see figure). Find ar (ΔABD)


In ∆ABC, D is the mid-point of AB and P is any point on BC. If CQ || PD meets AB in Q (Figure), then prove that ar (BPQ) = `1/2` ar (∆ABC).


In the following figure, X and Y are the mid-points of AC and AB respectively, QP || BC and CYQ and BXP are straight lines. Prove that ar (ABP) = ar (ACQ).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×