मराठी

In ∆ABC, D is the mid-point of AB and P is any point on BC. If CQ || PD meets AB in Q (Figure), then prove that ar (BPQ) = 12 ar (∆ABC). - Mathematics

Advertisements
Advertisements

प्रश्न

In ∆ABC, D is the mid-point of AB and P is any point on BC. If CQ || PD meets AB in Q (Figure), then prove that ar (BPQ) = `1/2` ar (∆ABC).

बेरीज

उत्तर


Given: In ∆ABC, D is the mid-point of AB and P is any point on BC.

CQ || PD means AB in Q.

To prove: ar (∆BPQ) = `1/2` ar (∆ABC)

Construction: Join PQ and CD.

Proof: Since, D is the mid-point of AB. So, CD is the median of ∆ABC.

We know that, a median of a triangle divides it into two triangles of equal areas.

∴ ar (∆BCD) = `1/2` ar (∆ABC)

⇒ ar (∆BPD) + ar (∆DPC) = `1/2` ar (∆ABC)  ...(i)

Now, ∆DPQ and ∆DPC are on the same base DP and between the same parallel lines DP and CQ.

So, ar (∆DPQ) = ar (∆DPC)  ...(ii)

On putting the value from equation (ii) in equation (i), we get

ar (∆BPD) + ar (∆DPQ) = `1/2` ar (∆ABC)

⇒ ar (∆BPQ) = `1/2` ar (∆ABC)

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Areas of Parallelograms & Triangles - Exercise 9.3 [पृष्ठ ९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
पाठ 9 Areas of Parallelograms & Triangles
Exercise 9.3 | Q 4. | पृष्ठ ९०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed (see the following figure). Show that

ar (ABCD) = ar (PBQR).

[Hint: Join AC and PQ. Now compare area (ACQ) and area (APQ)]


ABCD is a trapezium with AB || DC. A line parallel to AC intersects AB at X and BC at Y. Prove that ar (ADX) = ar (ACY). 

[Hint: Join CX.]


Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar (AOD) = ar (BOC). Prove that ABCD is a trapezium.


Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that ar (APB) × ar (CPD) = ar (APD) × ar (BPC).

[Hint : From A and C, draw perpendiculars to BD.]


P and Q are respectively the mid-points of sides AB and BC of a triangle ABC and R is the mid-point of AP, show that

(i) ar(PRQ) = 1/2 ar(ARC)

(ii) ar(RQC) = 3/8 ar(ABC)

(iii) ar(PBQ) = ar(ARC)


In a ΔABC, if L and M are points on AB and AC respectively such that LM || BC. Prove
that:

(1) ar (ΔLCM ) = ar (ΔLBM )
(2) ar (ΔLBC) = ar (ΔMBC)
(3) ar (ΔABM) ar (ΔACL)
(4) ar (ΔLOB) ar (ΔMOC)


The area of the parallelogram ABCD is 90 cm2 (see figure). Find

  1. ar (ΔABEF)
  2. ar (ΔABD)
  3. ar (ΔBEF)


A point E is taken on the side BC of a parallelogram ABCD. AE and DC are produced to meet at F. Prove that ar (ADF) = ar (ABFC)


The medians BE and CF of a triangle ABC intersect at G. Prove that the area of ∆GBC = area of the quadrilateral AFGE.


In the following figure, CD || AE and CY || BA. Prove that ar (CBX) = ar (AXY).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×