मराठी

In a δAbc, If L and M Are Points on Ab and Ac Respectively Such that Lm || Bc. Prove That: (1) Ar (δLcm ) = Ar (δLbm ) (2) Ar (δLbc) = Ar (δMbc) (3) Ar (δAbm) Ar (δAcl) (4) Ar (δLob) Ar (δMoc) - Mathematics

Advertisements
Advertisements

प्रश्न

In a ΔABC, if L and M are points on AB and AC respectively such that LM || BC. Prove
that:

(1) ar (ΔLCM ) = ar (ΔLBM )
(2) ar (ΔLBC) = ar (ΔMBC)
(3) ar (ΔABM) ar (ΔACL)
(4) ar (ΔLOB) ar (ΔMOC)

उत्तर

(1)   Clearly Triangles LMB and LMC are on the same base LM and between the same
parallels LM and BC.

∴ ar (ΔLMB) = ar (ΔLMC)      ......(1)

(2) We observe that triangles LBC and MBC area on the same base BC and between the
same parallels LM and BC
 ∴ arc  ΔLBC = ar (MBC)                  ..........(2)

 (3)  We have
ar (ΔLMB) = ar  (ΔLMC)                       [from (1)]
⇒  ar  ( ΔALM) + ar (ΔLMB) = ar (ΔALM) +  ar (LMC) 
⇒  ar (ΔABM)  = ar (ΔACL)

(4)  We have
ar(ΔCBC) = ar (ΔMBC)              ∴ [from (1)]

⇒ ar  (ΔLBC) =  ar (ΔBOC) =  a (ΔMBC) - ar (BOC)

⇒  ar (ΔLOB) = ar (ΔMOC)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Areas of Parallelograms and Triangles - Exercise 14.3 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 14 Areas of Parallelograms and Triangles
Exercise 14.3 | Q 28 | पृष्ठ ४८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In a triangle ABC, E is the mid-point of median AD. Show that ar (BED) = 1/4ar (ABC).


XY is a line parallel to side BC of a triangle ABC. If BE || AC and CF || AB meet XY at E and F respectively, show that

ar (ABE) = ar (ACF)


Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar (AOD) = ar (BOC). Prove that ABCD is a trapezium.


Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that ar (APB) × ar (CPD) = ar (APD) × ar (BPC).

[Hint : From A and C, draw perpendiculars to BD.]


In Fig. below, ABC and BDE are two equilateral triangles such that D is the mid-point of
BC. AE intersects BC in F. Prove that

(1)  ar (Δ BDE) = `1/2` ar (ΔABC) 

(2) Area ( ΔBDE) `= 1/2 ` ar (ΔBAE)

(3)  ar (BEF) = ar (ΔAFD)

(4) area (Δ ABC) = 2 area (ΔBEC)

(5) ar (ΔFED) `= 1/8` ar (ΔAFC) 

(6) ar (Δ BFE) = 2 ar (ΔEFD)


If a triangle and a parallelogram are on the same base and between same parallels, then the ratio of the area of the triangle to the area of parallelogram is ______.


ABCD is a parallelogram and X is the mid-point of AB. If ar (AXCD) = 24 cm2, then ar (ABC) = 24 cm2.


O is any point on the diagonal PR of a parallelogram PQRS (Figure). Prove that ar (PSO) = ar (PQO).


In the following figure, CD || AE and CY || BA. Prove that ar (CBX) = ar (AXY).


In the following figure, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove that ar (ABCDE) = ar (APQ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×