मराठी

XY is a line parallel to side BC of a triangle ABC. If BE || AC and CF || AB meet XY at E and F respectively, show that ar (ABE) = ar (ACF) - Mathematics

Advertisements
Advertisements

प्रश्न

XY is a line parallel to side BC of a triangle ABC. If BE || AC and CF || AB meet XY at E and F respectively, show that

ar (ABE) = ar (ACF)

उत्तर

It is given that

XY || BC ⇒ EY || BC

BE || AC ⇒ BE || CY

Therefore, EBCY is a parallelogram.

It is given that

XY || BC ⇒ XF || BC

FC || AB ⇒ FC || XB

Therefore, BCFX is a parallelogram.

Parallelograms EBCY and BCFX are on the same base BC and between the same parallels BC and EF.

∴ Area (EBCY) = Area (BCFX) ... (1)

Consider parallelogram EBCY and ΔAEB

These lie on the same base BE and are between the same parallels BE and AC.

∴ Area (ΔABE) = 1/2Area (EBCY) ... (2)

Also, parallelogram BCFX and ΔACF are on the same base CF and between the same parallels CF and AB.

∴ Area (ΔACF) = 1/2Area (BCFX) ... (3)

From equations (1), (2), and (3), we obtain

Area (ΔABE) = Area (ΔACF)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Areas of Parallelograms and Triangles - Exercise 9.3 [पृष्ठ १६३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
पाठ 9 Areas of Parallelograms and Triangles
Exercise 9.3 | Q 8 | पृष्ठ १६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×