Advertisements
Advertisements
Question
XY is a line parallel to side BC of a triangle ABC. If BE || AC and CF || AB meet XY at E and F respectively, show that
ar (ABE) = ar (ACF)
Solution
It is given that
XY || BC ⇒ EY || BC
BE || AC ⇒ BE || CY
Therefore, EBCY is a parallelogram.
It is given that
XY || BC ⇒ XF || BC
FC || AB ⇒ FC || XB
Therefore, BCFX is a parallelogram.
Parallelograms EBCY and BCFX are on the same base BC and between the same parallels BC and EF.
∴ Area (EBCY) = Area (BCFX) ... (1)
Consider parallelogram EBCY and ΔAEB
These lie on the same base BE and are between the same parallels BE and AC.
∴ Area (ΔABE) = 1/2Area (EBCY) ... (2)
Also, parallelogram BCFX and ΔACF are on the same base CF and between the same parallels CF and AB.
∴ Area (ΔACF) = 1/2Area (BCFX) ... (3)
From equations (1), (2), and (3), we obtain
Area (ΔABE) = Area (ΔACF)
APPEARS IN
RELATED QUESTIONS
In the given figure, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F. Show that
(i) ar (ACB) = ar (ACF)
(ii) ar (AEDF) = ar (ABCDE)
A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.
ABCD is a trapezium with AB || DC. A line parallel to AC intersects AB at X and BC at Y. Prove that ar (ADX) = ar (ACY).
[Hint: Join CX.]
In the given figure, AP || BQ || CR. Prove that ar (AQC) = ar (PBR).
In the following figure, ABCD and EFGD are two parallelograms and G is the mid-point of CD. Then ar (DPC) = `1/2` ar (EFGD).
X and Y are points on the side LN of the triangle LMN such that LX = XY = YN. Through X, a line is drawn parallel to LM to meet MN at Z (See figure). Prove that ar (LZY) = ar (MZYX)
The area of the parallelogram ABCD is 90 cm2 (see figure). Find ar (ΔBEF)
A point E is taken on the side BC of a parallelogram ABCD. AE and DC are produced to meet at F. Prove that ar (ADF) = ar (ABFC)
The medians BE and CF of a triangle ABC intersect at G. Prove that the area of ∆GBC = area of the quadrilateral AFGE.
In ∆ABC, if L and M are the points on AB and AC, respectively such that LM || BC. Prove that ar (LOB) = ar (MOC)