Advertisements
Advertisements
प्रश्न
In how many ways can the letters of the word SUCCESS be arranged so that all Ss are together?
उत्तर
SUCCESS
Number of letters = 7
Number of ‘S’ = 3
Since we want all ‘S’ together treat all 3 S’s as 1 unit.
Now the remaining letters = 4
∴ Total number of unit = 5
They can be arranged in 5! ways of them C repeats two times.
So total number of arrangements = `(5!)/(2!)` = 60
APPEARS IN
संबंधित प्रश्न
Evaluate `(n!)/((n-r)!)` when n = 6, r = 2
Evaluate `(n!)/((n-r)!)`, when n = 9, r = 5
How many 3-digit even numbers can be made using the digits 1, 2, 3, 4, 6, 7, if no digit is repeated?
In how many ways can the letters of the word PERMUTATIONS be arranged if the words start with P and end with S.
How many natural numbers not exceeding 4321 can be formed with the digits 1, 2, 3 and 4, if the digits can repeat?
In how many ways can 7 letters be posted in 4 letter boxes?
In how many ways can 4 prizes be distributed among 5 students, when
(i) no student gets more than one prize?
(ii) a student may get any number of prizes?
(iii) no student gets all the prizes?
Evaluate each of the following:
P(6, 4)
Write the number of ways in which 6 men and 5 women can dine at a round table if no two women sit together ?
Write the number of numbers that can be formed using all for digits 1, 2, 3, 4 ?
The number of different signals which can be given from 6 flags of different colours taking one or more at a time, is
The number of six letter words that can be formed using the letters of the word "ASSIST" in which S's alternate with other letters is
A 5-digit number divisible by 3 is to be formed using the digits 0, 1, 2, 3, 4 and 5 without repetition. The total number of ways in which this can be done is
The greatest positive integer which divide n(n + 1) (n + 2) (n + 3) for all n ∈ N is:
In how many ways 4 mathematics books, 3 physics books, 2 chemistry books and 1 biology book can be arranged on a shelf so that all books of the same subjects are together
Find the number of strings that can be made using all letters of the word THING. If these words are written as in a dictionary, what will be the 85th string?
Choose the correct alternative:
If Pr stands for rPr then the sum of the series 1 + P1 + 2P2 + 3P3 + · · · + nPn is
How many words can be formed with the letters of the word MANAGEMENT by rearranging them?
The number of signals that can be sent by 6 flags of different colours taking one or more at a time is ______.
There are 10 persons named P1, P2, P3, ... P10. Out of 10 persons, 5 persons are to be arranged in a line such that in each arrangement P1 must occur whereas P4 and P5 do not occur. Find the number of such possible arrangements.