मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

In the following, determine whether the following function is homogeneous or not. If it is so, find the degree. U(x, y, z) = xy+sin(y2-2z2xy) - Mathematics

Advertisements
Advertisements

प्रश्न

In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

U(x, y, z) = `xy + sin((y^2 - 2z^2)/(xy))`

बेरीज

उत्तर

U(x, y, z) = `xy + sin((y^2 - 2z^2)/(xy))`

`U"(lambdax, lambday, lambdaz) = lambdax  lambday + sin((lambda^2y^2 - 2lambda^2z^2)/(lambdaxlambday))`

= `lambda^2xy + sin((lambda^2(y^2 - 2z^2))/(lambda^2(xy)))`

= `lambda^2xy + sin ((y^2 - 2z^2)/(xy))`

There is no common λ

∴ It is not homogeneous.

shaalaa.com
Linear Approximation and Differential of a Function of Several Variables
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differentials and Partial Derivatives - Exercise 8.7 [पृष्ठ ८६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 8 Differentials and Partial Derivatives
Exercise 8.7 | Q 1. (iv) | पृष्ठ ८६

संबंधित प्रश्‍न

If w(x, y) = x3 – 3xy + 2y2, x, y ∈ R, find the linear approximation for w at (1, –1)


If u(x, y) = x2y + 3xy4, x = et and y = sin t, find `"du"/"dt"` and evaluate if at t = 0


Let u(x, y, z) = xy2z3 x = sin t, y = cos t, z = 1 + e2t, Find `"du"/"dt"`


If w(x, y, z) = x2 + y2 + z2, x = et, y = et sin t and z = et cos t, find `("d"w)/"dt"`


Let w(x, y) = 6x3 – 3xy + 2y2, x = es, y = cos s, s ∈ R. Find `("d"w)/"ds"` and evaluate at s = 0


W(x, y, z) = xy + yz + zx, x = u – v, y = uv, z = u + v, u, v ∈ R. Find `(del"W")/(del"u"), (del"W")/(del"v")` and evaluate them at `(1/2, 1)`


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

f(x, y) = x2y + 6x3 + 7


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

h(x, y) = `(6x^3y^2 - piy^5 + 9x^4y)/(2020x^2 + 2019y^2)` 


In the following, determine whether the following function is homogeneous or not. If it is so, find the degree.

g(x, y, z) = `sqrt(3x^2+ 5y^2+z^2)/(4x + 7y)`


Prove that f(x, y) = x3 – 2x2y + 3xy2 + y3 is homogeneous. What is the degree? Verify Euler’s Theorem for f


Prove that g(x, y) = `x log(y/x)` is homogeneous What is the degree? Verify Eulers Theorem for g


If `"u"(x , y) = (x^2 + y^2)/sqrt(x + y)`, prove that `x (del"v")/(delx) + y (del"u")/(dely) = 3/2 "u"`


If w(x, y, z) = `log((5x^3y^4 + 7y^2xz^4 - 75y^3zz^4)/(x^2 + y^2))`, find `x (del"w")/(delx) + y (del"w")/(dely) + z (del"w")/(delz)`


Choose the correct alternative:

If v(x, y) = log(ex + ey), then `(del"v")/(delx) + (del"u")/(dely)` is equal to


Choose the correct alternative:

If f(x, y) = exy, then `(del^2"f")/(delxdely)` is equal to


Choose the correct alternative:

f u(x, y) = x2 + 3xy + y – 2019, then `(delu)/(delx) "|"_(((4 , - 5)))` is equal to


Choose the correct alternative:

If w(x, y, z) = x2(y – z) + y2(z – x)+ z2(x – y) then `(del"w")/(delz) + (del"w")/(dely) + (del"w")/(delz)` is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×