Advertisements
Advertisements
प्रश्न
In the given figure; AB = BC and AD = EC.
Prove that: BD = BE.
उत्तर
In ΔABC,
AB = BC .......(given)
⇒ ∠BCA = ∠BAC .......(Angles opposite to equal sides are equal)
⇒ ∠BCD = ∠BAE ….(i)
Given, AD = EC
⇒ AD + DE = EC + DE ...(Adding DE on both sides)
⇒ AE = CD .....….(ii)
Now, in triangles ABE and CBD,
AB = BC .....(given)
∠BAE = ∠BCD ....[From (i)]
AE = CD ......[From (ii)]
⇒ ΔABE ≅ ΔCBD
⇒ BE = BD ....(cpct)
APPEARS IN
संबंधित प्रश्न
In the figure given below, LM = LN; angle PLN = 110o.
calculate: (i) ∠LMN
(ii) ∠MLN
Calculate x :
Calculate x :
Prove that a triangle ABC is isosceles, if: altitude AD bisects angles BAC.
Prove that a triangle ABC is isosceles, if: bisector of angle BAC is perpendicular to base BC.
If the equal sides of an isosceles triangle are produced, prove that the exterior angles so formed are obtuse and equal.
In isosceles triangle ABC, AB = AC. The side BA is produced to D such that BA = AD.
Prove that: ∠BCD = 90°
ABC is a triangle. The bisector of the angle BCA meets AB in X. A point Y lies on CX such that AX = AY.
Prove that: ∠CAY = ∠ABC.
Use the given figure to prove that, AB = AC.
The bisectors of the equal angles B and C of an isosceles triangle ABC meet at O. Prove that AO bisects angle A.