Advertisements
Advertisements
प्रश्न
ABC is a triangle. The bisector of the angle BCA meets AB in X. A point Y lies on CX such that AX = AY.
Prove that: ∠CAY = ∠ABC.
उत्तर
In ABC,
CX is the angle bisector of ∠C
⇒ ∠ACY = ∠BCX .........(i)
In ΔAXY,
AX = AY .........[Given]
∠AXY = ∠AYX ........(ii) [angles opposite to equal sides are equal]
Now,
∠XYC = ∠AXB = 180° .........[straight line]
⇒ ∠AYX + ∠AYC = ∠AXY + ∠BXY
⇒ ∠AYC = ∠BXY .......(iii) [From (ii)]
In ΔAYC and ΔBXC
∠AYC + ∠ACY + ∠CAY = ∠BXC + ∠BCX + ∠XBC = 180°
⇒ ∠CAY = ∠XBC .......[From (i) and (iii)]
⇒ ∠CAY = ∠ABC
APPEARS IN
संबंधित प्रश्न
An isosceles triangle ABC has AC = BC. CD bisects AB at D and ∠CAB = 55°.
Find:
- ∠DCB
- ∠CBD
In the figure given below, LM = LN; angle PLN = 110o.
calculate: (i) ∠LMN
(ii) ∠MLN
Calculate x :
In the given figure; AB = BC and AD = EC.
Prove that: BD = BE.
Prove that a triangle ABC is isosceles, if: bisector of angle BAC is perpendicular to base BC.
In the given figure, AD = AB = AC, BD is parallel to CA and angle ACB = 65°. Find angle DAC.
In triangle ABC; AB = AC and ∠A : ∠B = 8 : 5; find angle A.
Using the information given of the following figure, find the values of a and b.
In isosceles triangle ABC, AB = AC. The side BA is produced to D such that BA = AD.
Prove that: ∠BCD = 90°
The bisectors of the equal angles B and C of an isosceles triangle ABC meet at O. Prove that AO bisects angle A.