मराठी

In Young’S Double Slit Experiment, Deduce the Conditions for Obtaining Constructive and Destructive Interference Fringes. - Physics

Advertisements
Advertisements

प्रश्न

In young’s double slit experiment, deduce the conditions for obtaining constructive and destructive interference fringes. Hence, deduce the expression for the fringe width.

उत्तर

Young’s double slit experiment demonstrated the phenomenon of interference of light. Consider two fine slits S1 and S2 at a small distance d apart. Let the slits be illuminated by a monochromatic source of light of wavelength λ. Let GG′ be a screen kept at a distance D from the slits. The two waves emanating from slits S1 and S2 superimpose on each other resulting in the formation of an interference pattern on the screen placed parallel to the slits.

Let O be the centre of the distance between the slits. The intensity of light at a point on the screen will depend on the path difference between the two waves reaching that point. Consider an arbitrary point P at a distance x from O on the screen.

Path difference between two waves at P = S2P − S1P

The intensity at the point P is maximum or minimum as the path difference is an integral multiple of wavelength or an odd integral multiple of half wavelength

For the point P to correspond to maxima, we must have

S2P − S1P = n, n = 0, 1, 2, 3...

From the figure given above

`(S_2P)^2-(S_1P)^2=D^2+(x+d/2)^2-D^2+(x-d/2)^2`

On solving we get:

(S2P)2-(S1P)2=2xd

`S_2P-S_1P=(2xd)/(S_2P+S_1P)`

As d<<D, then S2P + S2P = 2D  (∵ S1P = S2P ≡ D when d<<D)

`:.S_2P-S_1P=(2xd)/(2D)=(xd)/D`

Path difference, `S_2P-S_1P=(xd)/D`

Hence, when constructive interfernce occur, bright region is formed.

For maxima or bright fringe, path difference = `xd/D=nlambda`

i.e `x=(nlambdaD)/d`

 where n=0,± 1, ±2,........

During destructive interference, dark fringes are formed:

Path difference, `(xd)/D=(n+1/2)lambda`

`x=(n+1/2)(lambdaD)/d`

The dark fringe and the bright fringe are equally spaced and the distance between consecutive bright and dark fringe is given by:

β = xn+1-xn

`beta=((n+1)lambdaD)/d-(nlambdaD)/d`

`beta=(lambdaD)/d`

Hence the fringe width is given by `beta = (lambdaD)/d`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Panchkula Set 3

संबंधित प्रश्‍न

Using analytical method for interference bands, obtain an expression for path difference between two light waves.


Two polaroids ‘A’ and ‘B’ are kept in crossed position. How should a third polaroid ‘C’ be placed between them so that the intensity of polarized light transmitted by polaroid B reduces to 1/8th of the intensity of unpolarized light incident on A?


Two coherent sources of light having intensity ratio 81 : 1 produce interference fringes. Calculate the ratio of intensities at the maxima and minima in the interference pattern.


Can we perform Young's double slit experiment with sound waves? To get a reasonable "fringe pattern", what should be the order of separation between the slits? How can the bright fringes and the dark fringes be detected in this case?


If the source of light used in a Young's double slit experiment is changed from red to violet, ___________ .


In a Young's double slit experiment, using monochromatic light, the fringe pattern shifts by a certain distance on the screen when a mica sheet of refractive index 1.6 and thickness 1.964 micron (1 micron = 10−6 m) is introduced in the path of one of the interfering waves. The mica sheet is then removed and the distance between the screen and the slits is doubled. It is found that the distance between the successive maxima now is the same as the observed fringe-shift upon the introduction of the mica sheet. Calculate the wavelength of the monochromatic light used in the experiment.


What should be the path difference between two waves reaching a point for obtaining constructive interference in Young’s Double Slit experiment ?


ASSERTION (A): In an interference pattern observed in Young's double slit experiment, if the separation (d) between coherent sources as well as the distance (D) of the screen from the coherent sources both are reduced to 1/3rd, then new fringe width remains the same.

REASON (R): Fringe width is proportional to (d/D).


How will the interference pattern in Young's double-slit experiment be affected if the phase difference between the light waves emanating from the two slits S1 and S2 changes from 0 to π and remains constant?


The central fringe of the interference pattern produced by the light of wavelength 6000 Å is found to shift to the position of the fourth bright fringe after a glass plate of refractive index 1.5 is introduced in the path of one of the beams. The thickness of the glass plate would be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×