Advertisements
Advertisements
प्रश्न
ज्ञात कीजिए कि चर x परिमेय संख्या निरूपित करता है या अपरिमेय संख्या।
x2 = 5
उत्तर
x2 = 5
हल करने पर, हमें प्राप्त होता है।
⇒ `x = +- sqrt(5)`
अतः, x एक अपरिमेय संख्या है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक को सरल कीजिए:
`(sqrt5 + sqrt2)^2`
आपको याद हो कि π को एक वृत्त की परिधि (मान लीजिए c) और उसके व्यास (मान लीजिए d) के अनुपात से परिभाषित किया जाता है, अर्थात् π = `c/d` है। यह इस तथ्य का अंतर्विरोध करता हुआ प्रतीत होता है कि π अपरिमेय है। इस अंतर्विरोध का निराकरण आप किस प्रकार करेंगे?
निम्नलिखित के हर का परिमेयकरण कीजिए:
`1/sqrt7`
निम्नलिखित के बीच में एक परिमेय संख्या और एक अपरिमेय संख्या प्रविष्ट कीजिए :
0 और 0.1
निम्नलिखित के बीच में एक परिमेय संख्या और एक अपरिमेय संख्या प्रविष्ट कीजिए :
0.15 और 0.16
निम्नलिखित के बीच में एक परिमेय संख्या और एक अपरिमेय संख्या प्रविष्ट कीजिए :
0.0001 और 0.001
निम्नलिखित के हर का परिमेयीकरण कीजिए :
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
सरल कीजिए :
`[((625)^(-1/2))^((-1)/4)]^2`
यदि `sqrt(2) = 1.414, sqrt(3) = 1.732` हो, तो `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))` का मान ज्ञात कीजिए।
यदि `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` और `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))` है, तो x2 + y2 का मान ज्ञात कीजिए।