Advertisements
Advertisements
प्रश्न
m का मान ज्ञात कीजिए ताकि 2x – 1 बहुपद 8x4 + 4x3 – 16x2 + 10x + m का एक गुणनखंड हो।
उत्तर
माना p(x) = 8x4 + 4x3 – 16x2 + 10x + m
चूँकि, 2x – 1, p(x) का गुणनखंड है, तो `p(1/2) = 0` रखिए
∴ `8(1/2)^4 + 4(1/2)^3 - 16(1/2)^2 + 10(1/2) + m = 0`
⇒ `8 xx 1/16 + 4 xx 1/8 - 16 xx 1/4 + 10(1/2) + m = 0`
⇒ `1/2 + 1/2 - 4 + 5 + m = 0`
⇒ 1 + 1 + m = 0
∴ m = –2
अतः, m का मान –2 है।
APPEARS IN
संबंधित प्रश्न
गुणनखंड प्रमेय लागू करके बताइए कि निम्नलिखित स्थिति में g(x), p(x) का एक गुणनखंड है या नहीं:
p(x) = 2x3 + x2 – 2x – 1, g(x) = x + 1
k का मान ज्ञात कीजिए जबकि निम्नलिखित स्थिति में (x - 1), p(x) का एक गुणनखंड हो:
p(x) = `2x^2 + kx + sqrt2`
`(-4)/5` बहुपद 4 – 5y का एक शून्यक है।
यदि x + 2a बहुपद x5 – 4a2x3 + 2x + 2a + 3, का एक गुणनखंड है, तो a ज्ञात कीजिए।
गुणनखंड कीजिए :
2x2 – 7x – 15
निम्नलिखित के गुणनखंड कीजिए :
`(2x + 1/3)^2 - (x - 1/2)^2`
निम्नलिखित के गुणनखंड कीजिए :
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz
गुणनखंड कीजिए :
`a^3 - 2sqrt(2)b^3`
घनों का वास्तविक रूप से परिकलन किए बिना निम्नलिखित का मान ज्ञात कीजिए :
`(1/2)^3 + (1/3)^3 - (5/6)^3`
निम्नलिखित के मान ज्ञात कीजिए :
x3 + y3 – 12xy + 64, जब x + y = – 4 है।