Advertisements
Advertisements
प्रश्न
यदि x + 1 बहुपद ax3 + x2 – 2x + 4a – 9 का एक गुणनखंड है, तो a का मान ज्ञात कीजिए।
उत्तर
माना p(x) = ax3 + x2 – 2x + 4a – 9
चूँकि, x + 1, p(x) का एक गुणनखंड है, तो p(–1) = 0 रखिए
∴ a(–1)3 + (–1)2 – 2(–1) + 4a – 9 = 0
⇒ –a + 1 + 2 + 4a – 9 = 0
⇒ 3a – 6 = 0
⇒ 3a = 6
⇒ `a = 6/3 = 2`
अत:, a का मान 2 है।
APPEARS IN
संबंधित प्रश्न
बताइए कि निम्नलिखित बहुपद का एक गुणनखंड x + 1 है।
`x^3 - x^2 - (2 + sqrt2)x + sqrt2`
गुणनखंड ज्ञात कीजिए:
x3 - 2x2 - x + 2
गुणनखंड ज्ञात कीजिए:
x3 − 3x2 − 9x − 5
गुणनखंड कीजिए :
84 – 2r – 2r2
निम्नलिखित के गुणनखंड कीजिए :
9x2 – 12x + 3
निम्नलिखित के गुणनखंड कीजिए :
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
यदि a + b + c = 9 और ab + bc + ca = 26 है, तो a2 + b2 + c2 का मान ज्ञात कीजिए।
निम्नलिखित का प्रसार कीजिए :
`(1/x + y/3)^3`
निम्नलिखित गुणनफल ज्ञात कीजिए :
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`
उस आयत की लंबाई और चौड़ाई के लिए संभव व्यंजक दीजिए जिसका क्षेत्रफल 4a2 + 4a – 3 हैं।