Advertisements
Advertisements
Question
यदि x + 1 बहुपद ax3 + x2 – 2x + 4a – 9 का एक गुणनखंड है, तो a का मान ज्ञात कीजिए।
Solution
माना p(x) = ax3 + x2 – 2x + 4a – 9
चूँकि, x + 1, p(x) का एक गुणनखंड है, तो p(–1) = 0 रखिए
∴ a(–1)3 + (–1)2 – 2(–1) + 4a – 9 = 0
⇒ –a + 1 + 2 + 4a – 9 = 0
⇒ 3a – 6 = 0
⇒ 3a = 6
⇒ `a = 6/3 = 2`
अत:, a का मान 2 है।
APPEARS IN
RELATED QUESTIONS
बताइए कि निम्नलिखित बहुपद का एक गुणनखंड x + 1 है।
x4 + 3x3 + 3x2 + x + 1
k का मान ज्ञात कीजिए जबकि निम्नलिखित स्थिति में (x - 1), p(x) का एक गुणनखंड हो:
p(x) = `kx^2 - sqrt2x + 1`
गुणनखंड ज्ञात कीजिए:
2y3 + y2 - 2y - 1
बहुपद `((x^3 + 2x + 1))/5 - 7/2 x^2 - x^6` के लिए, लिखिए :
x3 का गुणांक
जाँच कीजिए कि p(x), g(x) का एक गुणज है या नहीं :
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2
निर्धारित कीजिए कि निम्नलिखित में से किस बहुपद का x – 2 एक गुणनखंड है :
4x2 + x – 2
यदि x + 2a बहुपद x5 – 4a2x3 + 2x + 2a + 3, का एक गुणनखंड है, तो a ज्ञात कीजिए।
यदि x + 2a बहुपद x5 – 4a2x3 + 2x + 2a + 3, का एक गुणनखंड है, तो a ज्ञात कीजिए।
m का मान ज्ञात कीजिए ताकि 2x – 1 बहुपद 8x4 + 4x3 – 16x2 + 10x + m का एक गुणनखंड हो।
निम्नलिखित के मान ज्ञात कीजिए :
x3 + y3 – 12xy + 64, जब x + y = – 4 है।