Advertisements
Advertisements
प्रश्न
मान लीजिए [-1, 1] से असंयुक्त एक अंतराल I हो तो सिद्ध कीजिए कि I में f(x) `= "x" + 1/"x"` से प्रदत्त फलन f, वर्धमान है।
उत्तर
हमारे पास है `f (x) = x + 1/x, x in I`
`f' (x) = 1 - 1/x^2 = (x^2 - 1)/x^2`
`x^2 > 0 (1, 1), x^2 - 1 > 0 = x^2 > 1`
= `x < - 1 or x > 1`
= `x in (-oo, -1) or x in (1, oo)`
= `x in (-oo, -1) cup (1, oo) `
= `x in R - (-1, 1)`
x = 1 और x = - 1 वास्तविक रेखा को अंतरालों `(- infty, -1), (-1, 1)` और `(1, infty)` में विभक्त करता है।
अत: `(- infty, - 1)` और `(1, infty)` अंतराल को दर्शता है।
फलन f अंतरालों `(- infty, -1)` और `(1, infty)` निरंतर वर्धमान है।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि R पर f(x) = 3x + 17 से प्रदत्त फलन वर्धमान है।
सिद्ध कीजिए कि R पर f(x) = e2x से प्रदत्त फलन वर्धमान है।
सिद्ध कीजिए कि f(x) = sin x द्वारा दिया गया फलन
- `(0, pi/2)` में निरंतर वर्धमान है।
- `(pi/2, pi)` में निरंतर ह्रासमान है।
- `(0, pi)` में न तो वर्धमान है और न ह्रासमान।
अंतराल ज्ञात कीजिए जिनमें f(x) = 2x2 - 3x से प्रदत्त फलन f
- वर्धमान
- ह्रासमान
अंतराल ज्ञात कीजिए जिनमें f(x) = 2x3 - 3x2 - 36x + 7 से प्रदत्त फलन f
- वर्धमान
- ह्रासमान
सिद्ध कीजिए कि y = log (1 + x) - `(2"x")/(2 + "x"),` x > -1 अपने संपूर्ण प्रांत में में एक वर्धमान फलन है।
x के उन मानों को ज्ञात कीजिए जिनके लिए y = [x(x – 2)]2 एक वर्धमान फलन है।
सिद्ध कीजिए कि `[0, pi/2]` में `y = (4 sin theta)/(2 + cos theta) - theta, theta` का एक वर्धमान फलन है।
सिद्ध कीजिए कि (-1,1) में f(x) = x2 - x + 1 से प्रदत्त फलन न तो वर्धमान है और न ही ह्रासमान है।
अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या हासमान है:
f(x) = x2 + 2x + 5
अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या हासमान है:
f(x) = - 2x3 - 9x2 - 12x + 1
अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या ह्रासमान है:
f(x) = 6 - 9x - x2
निम्नलिखित में कौन से फलन `(0, pi/2)` में ह्रासमान है?
- cos x
- cos 2x
- cos 3x
- tan x
a का वह न्यूनतम मान ज्ञात कीजिए जिसके लिए अंतराल [1, 2] में f(x) = x2 + ax + 1 से प्रदत्त फलन वर्धमान है।
सिद्ध कीजिए कि फलन f(x) = log sin x, `(0, pi/2)` में वर्धमान और `(pi/2, pi)` में ह्रासमान है।
सिद्ध कीजिए कि फलन f(x) = log |cos x| `(0, pi/2)` में वर्धमान और `((3pi)/2, 2pi)` में ह्रासमान है।
सिद्ध कीजिए कि R में दिया गया फलन f(x) = x3 - 3x2 + 3x - 100 वर्धमान है।
निम्नलिखित में से किस अंतराल में y = x2 e-x वर्धमान है?
अंतराल ज्ञात कीजिए जिन पर: f(x) = `(4 sin x - 2x - x cos x)/(2 + cos x)` से प्रदत्त फलन (i) वर्धमान, (ii) ह्रासमान है।
अंतराल ज्ञात कीजिए जिन पर f(x) = `x^3 + 1/x^3, x ne 0` से प्रदत्त फलन (i) वर्धमान, (ii) ह्रासमान है।
मान लीजिए [a, b] पर परिभाषित एक फलन f है। इस प्रकार कि सभी x ∈ (a, b) के लिए f' (x) > 0 है तो सिद्ध कीजिए कि (a, b) पर f एक वर्धमान फलन है।