मराठी

निम्न रैखिक समीकरणों के युग्मों को हल कीजिए: ax + by = c bx + ay = 1 + c - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:

ax + by = c

bx + ay = 1 + c

बेरीज

उत्तर

चूंकि ax + by = c ⇒ ax + by - c = 0 ….(1)

एवं bx + ay = 1 + c ⇒ bx + ay - (c + 1) = 0 ….(2)

अब

⇒ `x/(b[-(c + 1)] - a(-c)) = y/(-c(b) - [-(c + 1)](a)) = 1/(a^2 - b^2)`

⇒ `x/(-bc - b + ac) = y/(-bc + ac + a) = 1/(a^2 - b^2)`

⇒ `x/(ac - bc - b) = y/(ac - bc + a) = 1/(a^2 - b^2)`

⇒ `x/(c(a - b) - b) = y/(c(a - b) + a) = 1/(a^2 - b^2)`

⇒ `x = (c(a - b) - b)/(a^2 - b^2) "एवं"  y = (c(a - b) + a)/(a^2 - b^2)`

shaalaa.com
दो चरों में रैखिक समीकरण युग्म
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: दो चरों वाले रैखिक समीकरण का युग्म - प्रश्नावली 3.7 (ऐच्छिक)* [पृष्ठ ७६]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
पाठ 3 दो चरों वाले रैखिक समीकरण का युग्म
प्रश्नावली 3.7 (ऐच्छिक)* | Q 7. (ii) | पृष्ठ ७६

संबंधित प्रश्‍न

आफ़ताब अपनी पुत्री से कहता है, 'सात वर्ष पूर्व मैं तुमसे सात गुनी आयु का था। अब से 3 वर्ष बाद मैं तुमसे केवल तीन गुनी आयु का रह जाऊँगा। (क्या यह मनोरंजक है?)' इस स्थिति को बीजगणितीय एवं ग्राफीय रूपों में व्यक्त कीजिए।


अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:

9x + 3y + 12 = 0

18x + 6y + 24 = 0


निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:

`x/a - y/b = 0`

ax + by = a2 + b2


निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:

(a - b)x + (a + b)y = a2 - 2ab - b2

(a + b)(x + y) = a2 + b2


आश्रित रैखिक समीकरणों के युग्म का एक समीकरण –5x + 7y = 2 है दूसरा समीकरण हो ______।


एक अद्वितीय हल x = 2, y = –3 वाले समीकरण का एक युग्म है ______। 


निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :

3x – y – 5 = 0 और 6x – 2y – p = 0,

यदि इन समीकरणों द्वारा निरूपित रेखाएँ समांतर हैं।


निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :

– x + py = 1 और px – y = 1,

यदि समीकरण-युग्म का कोई हल नहीं है।


निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :

– 3x + 5y = 7 और 2px – 3y = 1

यदि इन समीकरणों द्वारा निरूपित रेखाएँ एक अद्वितीय बिंदु पर प्रतिच्छेद करती हैं।


निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :

2x + 3y – 5 = 0 और px – 6y – 8 = 0,

यदि समीकरण-युग्म का एक अद्वितीय हल है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×