Advertisements
Advertisements
प्रश्न
निम्नलिखित समीकरण-युग्मों (i) से (iv) में p और (v) में p तथा q के मान ज्ञात कीजिए :
2x + 3y – 5 = 0 और px – 6y – 8 = 0,
यदि समीकरण-युग्म का एक अद्वितीय हल है।
उत्तर
रैखिक समीकरणों का दिया गया युग्म है।
2x + 3y – 5 = 0
px – 6y – 8 = 0
ax + by + c = 0 से तुलना करने पर, हमें मिलता है।
यहाँ, a1 = 2, b1 = 3, c1 = – 5
और a2 = p, b2 = – 6, c2 = – 8
`a_1/a_2 = 2/p`
`b_1/b_2 = - 3/6 = -1/2`
`c_1 /c_2 = 5/8`
चूँकि रैखिक समीकरणों के युग्म का एक अद्वितीय समाधान होता है,
`a_1/a_2 ≠ b_1/b_2`
तो, `2/p ≠ -1/2`
p ≠ – 4
इसलिए, रैखिक समीकरणों के युग्म का – 4 को छोड़कर p के सभी मानों के लिए एक अद्वितीय हल है।
APPEARS IN
संबंधित प्रश्न
अनुपातों `bb(a_1/a_2, b_1/b_2)` और `(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:
5x - 4y + 8 = 0
7x + 6y - 9 = 0
अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न समीकरण युग्म द्वारा निरूपण रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, समांतर हैं अथवा संपाती हैं:
9x + 3y + 12 = 0
18x + 6y + 24 = 0
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
ax + by = c
bx + ay = 1 + c
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
`x/a - y/b = 0`
ax + by = a2 + b2
निम्न रैखिक समीकरणों के युग्मों को हल कीजिए:
(a - b)x + (a + b)y = a2 - 2ab - b2
(a + b)(x + y) = a2 + b2
c का वह मान, जिसके लिए समीकरणों cx – y = 2 और 6x – 2y = 3 के युग्म के अपरिमित रूप से अनेक हल होंगे, है ______।
यदि x = a और y = b समीकरणों x – y = 2 और x + y = 4, का हल है, तो a और b के मान क्रमश : हैं ______।
दो सीधे पथ समीकरणों x – 3y = 2 और –2x + 6y = 5 द्वारा निरूपित हैं। जाँच कीजिए कि ये पथ परस्पर काटते हैं या नहीं।
यदि 2x + y = 23 और 4x – y = 19 है, तो 5y – 2x और `y/x - 2` के मान ज्ञात कीजिए।
4 पेन और 4 पेंसिल बॉक्सों का मूल्य 100 रु है। एक पेन के मूल्य का तीन गुना एक पेंसिल बॉक्स के मूल्य से 15 रु अधिक है। उपरोक्त स्थिति के लिए, रैखिक समीकरणों का एक युग्म बनाइए। एक पेन और एक पेंसिल बॉक्स के मूल्य भी ज्ञात कीजिए।