मराठी

निम्नलिखित के मान निकालिए- d∫ xx+1dx (संकेत: x = z रखिए) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित के मान निकालिए-

`int  x/sqrt(x + 1)"d"x`  (संकेत: `sqrtx` = z रखिए)

बेरीज

उत्तर

I = `int x/(sqrt(x) + 1) "d"x` 

`sqrt(x)` = t रखिए

⇒ x = t2

∴ dx = 2t . dt

∴ I = `int ("t" * 2"t" * "dt")/("t" + 1)`

= `2int "t"^3/("t" + 1) "dt"`

= `2int ("t"^3 + 1 - 1)/("t" + 1) "dt"`

= `2int ("t"^3 + 1)/("t" + 1) "dt" - 2int 1/("t" + 1) "dt"`

= `2int (("t" + 1)("t"^2 - "t" + 1))/("t" + 1) "dt" - 2int 1/("t" + 1) "dt"`

= `2int ("t"^2 - "t" + 1) "dt" - 2int 1/("t" + 1) "dt"`

= `2["t"^3/3 - "t"^2/2 + "t"] - 2 log |"t" + 1|`

= `2[x^(3/2)/3 - x/2 + sqrt(x)] - 2 log |sqrt(x) + 1| + "C"`

= `2[(xsqrt(x))/3 - x/2 + sqrt(x) - log |sqrt(x) + 1|] + "C"`

अत:, I = `2[(xsqrt(x))/3 - x/2 + sqrt(x) - log |sqrt(x) + 1|] + "C"`

shaalaa.com
समाकलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: समाकल - प्रश्नावली [पृष्ठ १६०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 7 समाकल
प्रश्नावली | Q 10 | पृष्ठ १६०

संबंधित प्रश्‍न

`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।


`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।


`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।


योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x`  का मान निकालिए।


`int sqrt(10 - 4x + 4x^2)  "d"x` ज्ञात कीजिए।


 `(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।


दर्शाइए कि  `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_-1^2 f (x)  "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1| 


`int "e"^x (cosx - sinx)"d"x`  बराबर है


`int ("d"x)/(sin^2 x cos^2 x)`  बराबर है


`int_(a+c)^(b+c) "f" (x)  "d"x` बराबर है


यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"`  बराबर है


`int_(-2)^2 |x cos pix| "d"x`  बराबर है


निम्नलिखित के मान निकालिए-

`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`


निम्नलिखित के मान निकालिए-

`int x^(1/2)/(1 + x^(3/4)) "d"x`   (संकेत: `sqrt(x)` = z4 रखिए)


निम्नलिखित के मान निकालिए-

`int sqrt(1 + x^2)/x^4 "d"x`


निम्नलिखित के मान निकालिए-

`int ("d"x)/sqrt(16 - 9x^2)`


निम्नलिखित के मान निकालिए-

`int sqrt(5 - 2x + x^2) "d"x`


निम्नलिखित के मान निकालिए-

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


निम्नलिखित के मान निकालिए-

`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`


निम्नलिखित के मान निकालिए-

`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`


निम्नलिखित के मान निकालिए-

`int (cos x - cos 2x)/ (1 - cos x)"d"x`


निम्नलिखित का मान निकालिए-

`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`


निम्नलिखित का मान निकालिए-

`int_0^1 (x"d"x)/sqrt(1 + x^2`


`int (x + sinx)/(1 + cosx) "d"x` बराबर है


यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______


 `int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` के = ______


`int sinx/(3 + 4cos^2x) "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×