Advertisements
Advertisements
प्रश्न
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
उत्तर
मान लीजिए I = `int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
x = sin θ रखिए
⇒ dx = cos θ dθ
I = `int (sin^-1(sin theta))/((1 - sin^2 theta)^(3/2)) * cos theta "d"theta`
= `int (theta * cos theta "d"theta)/((cos^2 theta)^(3/2))`
= `int (theta * cos theta)/(cos^3 theta) "d"theta`
= `int theta/(cos^2 theta) "d"theta`
= `int theta_"I" sec_"II"^2theta "d"theta`
=`theta * sec^2theta "d"theta - int ("D"(theta) * int sec^2theta "d"theta)"d"theta` .....`["क्योंकि" int "u"_"I" * "v"_"II" "d"x = "u" * int "v" "d"x - int ("D"("u") int "v" "dv")"dv" + "C"]`
= `theta * tan theta - int 1 * tan theta "d"theta`
= `theta * tan theta - log sec theta + "C"`
= `sin^-1x * x/sqrt(1 - x^2) - log|sqrt(1 - x^2)| + "C"` ......`[("कब" x = sin theta),("इसलिए" tan theta = x/sqrt(1 - x^2) "और" sec theta = sqrt(1 - x^2))]`
अत:, I = `(x sin^-1x)/sqrt(1 - x^2) - log|sqrt(1 - x^2)| + "C"`
APPEARS IN
संबंधित प्रश्न
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।
योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x` का मान निकालिए।
`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।
दर्शाइए कि `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int "e"^x (cosx - sinx)"d"x` बराबर है
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है
`int (sin^6x)/(cos^8x) "d"x` = ______.
निम्नलिखित के मान निकालिए-
`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int_0^x xsin x cos^2 x"d"x`
निम्नलिखित का मान निकालिए-
`int_"0"^pi (x"d"x)/(1 + sin x)`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को cos4x से भाग दीजिए)
`int tan^-1 sqrtx "d"x` बराबर है
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______
`int x^3/(x + 1)` बराबर है
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.